• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioélectronique graphène pour un interfaçage neuronal in-vivo durable / Graphene bioelectronics for long term neuronal interfacing in-vivo

Bourrier, Antoine 23 March 2017 (has links)
Le graphène, une couche monoatomique de carbone, est étudié comme matériau pourconstruire ou encapsuler des biocapteurs afin d’adresser les problèmes de durabilitérencontrés avec les implants intra-corticaux. Ces derniers sont des outils essentiels pour lesprojets médicaux de neuro-réhabilitation afin d’enregistrer les signaux de motoneuronesuniques dans le cerveau. Les implants actuels sont invasifs et leur efficacité est limitée dans letemps par la réaction de rejet des tissus. En combinant une synthèse de graphène optimiséeà cet usage (monocouche continue sur plusieurs cm²) et son intégration dans des capteursélectroniques ultra-sensibles, protégés par des polymères bioactifs, cette thèse propose unenouvelle approche pluridisciplinaire pour construire des implants offrant une meilleurebioacceptance. Au moyen de méthodes d’intégration innovantes et d’études ducomportement du graphène in-vivo et in-vitro, nous évaluons expérimentalement lafaisabilité d’intégration du graphène dans les futures interfaces cerveau machines pour desprojets médicaux au long terme. / Graphene, an atomically thin layer of carbon, is investigated as a biosensing andcoating material in order to address the long term durability issues of invasive intracorticalimplants. These devices are essential tools to record specific single motor neurons activity formedical applications aiming at healing neural injuries. Today’s implants suffer from their highinvasiveness. It is responsible for local inflammation that leads to the failure in unique neuronsactivity recordings in the motor cortex on a long term basis. By combining a monolayergraphene growth and transfer with an ultra-sensitive electronic integration and a biochemicalfunctionalization, this thesis proposes a new multidisciplinary approach to build intracorticalimplants with an improved bioacceptance. By using innovative methods of grapheneintegration in implants, and in-vitro and in-vivo studies to assess the reactions of living tissuesto graphene, we provide an overview of graphene’s potential contribution to future brainmachine interfaces for long term medical projects.

Page generated in 0.0637 seconds