• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Primary brain cells in in vitro controlled microenvironments : single cell behaviors for collective functions / Cellules primaires du cerveau en microenvironnements contrôlés in vitro

Tomba, Caterina 05 December 2014 (has links)
Du fait de sa complexité, le fonctionnement du cerveau est exploré par des méthodes très diverses, telles que la neurophysiologie et les neurosciences cognitives, et à des échelles variées, allant de l'observation de l'organe dans son ensemble jusqu'aux molécules impliquées dans les processus biologiques. Ici, nous proposons une étude à l'échelle cellulaire qui s'intéresse à deux briques élémentaires du cerveau : les neurones et les cellules gliales. L'approche choisie est la biophysique, de part les outils utilisés et les questions abordées sous l'angle de la physique. L'originalité de ce travail est d'utiliser des cellules primaires du cerveau dans un souci de proximité avec l'in vivo, au sein de systèmes in vitro dont la structure chimique et physique est contrôlé à l'échelle micrométrique. Utilisant les outils de la microélectronique pour un contrôle robuste des paramètres physico-chimiques de l'environnement cellulaire, ce travail s'intéresse à deux aspects de la biologie du cerveau : la polarisation neuronale, et la sensibilité des cellules gliales aux propriétés mécaniques de leur environnement. A noter que ces deux questions sont étroitement imbriquées lors de la réparation d'une lésion. La première est cruciale pour la directionalité de la transmission de signaux électriques et chimiques et se traduit par une rupture de symétrie dans la morphologie du neurone. La seconde intervient dans les mécanismes de recolonisation des lésions, dont les propriétés mécaniques sont altérées., Les études quantitatives menées au cours de cette thèse portent essentiellement sur la phénoménologie de la croissance de ces deux types de cellules et leur réponse à des contraintes géométriques ou mécaniques. L'objectif in fine est d'élucider quelques mécanismes moléculaires associés aux modifications de la structure cellulaire et donc du cytosquelette. Un des résultats significatifs de ce travail est le contrôle de la polarisation neuronale par le simple contrôle de la morphologie cellulaire. Ce résultat ouvre la possibilité de développer des architectures neuronales contrôlées in vitro à l'échelle de la cellule individuelle. / The complex structure of the brain is explored by various methods, such as neurophysiology and cognitive neuroscience. This exploration occurs at different scales, from the observation of this organ as a whole entity to molecules involved in biological processes. Here, we propose a study at the cellular scale that focuses on two building elements of brain: neurons and glial cells. Our approach reachs biophysics field for two main reasons: tools that are used and the physical approach to the issues. The originality of our work is to keep close to the in vivo by using primary brain cells in in vitro systems, where chemical and physical environments are controled at micrometric scale. Microelectronic tools are employed to provide a reliable control of the physical and chemical cellular environment. This work focuses on two aspects of brain cell biology: neuronal polarization and glial cell sensitivity to mechanical properties of their environment. As an example, these two issues are involved in injured brains. The first is crucial for the directionality of the transmission of electrical and chemical signals and is associated to a break of symmetry in neuron morphology. The second occurs in recolonization mechanisms of lesions, whose mechanical properties are impaired. During this thesis, quantitative studies are performed on these two cell types, focusing on their growth and their response to geometrical and mechanical constraints. The final aim is to elucidate some molecular mechanisms underlying changes of the cellular structure, and therefore of the cytoskeleton. A significant outcome of this work is the control of the neuronal polarization by a simple control of cell morphology. This result opens the possibility to develop controlled neural architectures in vitro with a single cell precision.
2

Neuronal polarization shapes the targeting and signaling of G-protein coupled receptors (GPCRs) : type-1 cannabinoid receptors and 5-HT1B serotonin receptors show highly contrasted trafficking and signaling patterns in axons and dendrites / La polarisation neuronale façonne l’adressage et la signalisation des récepteurs couplés aux protéines G (RCPG) : le récepteur canabinoïque de type 1 et le récepteur sérotoninergique 5-HT1B ont un trafic et une signalisation différents dans les axones et les dendrites

Ladarré, Delphine 03 October 2014 (has links)
L’architecture polarisée des neurones est mise en place est maintenue grâce à un adressage hautement contrôlé de protéines vers l’axone ou vers le compartiment somatodendritique. Parmi ces protéines, les récepteurs aux protéines G (RCPG) neuronaux sont des cibles pharmacologiques clés. Cependant, leur pharmacologie est généralement étudiée dans des lignées cellulaires non polarisées et les résultats obtenus dans ces systèmes ne caractérisent pas correctement les effets physiologiques de l’activation des RCPG présents dans le cerveau. Par conséquent, un des principaux sujets de recherche de notre équipe est de comprendre comment la polarité neuronale influe sur la pharmacologie des RCPG, en étudiant l’un des RCPG les plus abondants dans le cerveau : le récepteur cannabinoïque de type-1 (CB1R). Les études précédentes de notre groupe ont suggéré que CB1R acquiert une polarisation axonale grâce à un adressage transcytotique : après leur synthèse, ces récepteurs apparaissent sur la membrane plasmique somatodendritique d’où ils sont rapidement enlevés par endocytose constitutive puis adressés à la membrane plasmique axonale où ils s’accumulent du fait d’une endocytose réduite. Au début de ma thèse, nous avons directement mesuré cette endocytose différentielle et le transport transcytotique de CB1R en utilisant des neurones de rats mis en culture dans des dispositifs microfluidiques. De plus, nous avons montré que des traitements pharmacologiques prolongés peuvent fortement changer la distribution de RCPG à la surface neuronale. Ces résultats démontrent que l’équilibre endocytotique dépendant du compartiment neuronal, qui est contrôlable pharmacologiquement, est important pour la distribution des RCPG neuronaux. Dans une seconde partie, nous avons étudié si le trafic différentiel de CB1R entre axones et dendrites est corrélé avec une pharmacologie différentielle. CB1R est majoritairement couplé à des protéines de type Gi/o et est connu pour inhiber la production d’AMPc. Nous avons donc développé l’imagerie par Föster Resonance Energy Transfer (FRET) appliqué aux cultures de neurones d’hippocampe de rats afin de mesurer la modulation de la voie de signalisation AMPc/PKA en aval de CB1R endogènes dans l’ensemble des compartiments neuronaux : somata, dendrites, mais aussi dans les axones matures très fins. Nos résultats montrent que CB1R possède une pharmacologie différente entre les dendrites et les axones. Notamment, son activation conduit à une diminution plus forte de l’activité basale de la PKA dans les axones comparé aux dendrites, lié au plus grand nombre de récepteurs présents sur la membrane de ce compartiment. De plus, nous démontrons que, contrairement aux récepteurs axonaux, les CB1R somatodendritiques inhibent constitutivement la voie AMPc/PKA. Cette différence est due à la distribution polarisée de la DAGLipase, l’enzyme synthétisant l’endocannabinoïde principal, le 2-arachidonoyglycerol (2-AG). De plus, l’inhibition pharmacologique de la DAGL modifie l’efficacité de plusieurs agonistes de CB1R dans le compartiment somatodendritique mais pas dans l’axone. Cet effet pourrait être dû à une modulation allostérique. Dans une troisième partie, nous avons étudié si les résultats ci-dessus peuvent être généralisés à d’autres RCPG. Etant donné que l’adressage axonal et la pharmacologie in vitro des récepteurs sérotoninergiques 5-HT1B montrent de fortes similitudes avec ceux de CB1R, nous avons étudié la pharmacologie de ces récepteurs en utilisant la technique de FRET développée précédemment. De façon similaire, nous avons trouvé une pharmacologie différentielle entre l’axone et les dendrites. / Polarized neuronal architecture is achieved and maintained mainly through highly controlled targeting of proteins to axons versus to the somatodendritic compartment. Among these proteins, neuronal G protein coupled receptors (GPCRs) are key therapeutic targets. However, their pharmacology is generally studied in non-polarized cell lines, and results obtained in such systems likely do not fully characterize the physiological effects of brain GPCR activation. Therefore, a main research subject of our group is to understand how neuronal polarity influences GPCR pharmacology, by studying one of the most abundant GPCR in the brain: the type-1 cannabinoid receptor (CB1R). Previous studies of the group suggested that CB1Rs achieve axonal polarization through transcytotic targeting: after their synthesis, these receptors appear on the somatodendritic plasma membrane from where they are removed rapidly by constitutive endocytosis and then targeted to the axonal plasma membrane where they accumulate due to relatively reduced endocytosis rate. At the beginning of my PhD project we directly demonstrated this differential endocytosis and transcytotic transport of CB1Rs by using cultured neurons in microfluidic devices. Moreover, we showed that chronic pharmacological treatments may strongly change neuronal GPCR distribution on the neuronal surface. These results demonstrate that subdomain-dependent steady-state endocytosis, which is pharmacologically controllable, is important for GPCR distribution in neurons. In a second part, we asked if differential traffic of CB1Rs between axons and dendrites is correlated with differential pharmacology. CB1R is predominantly coupled to Gi/o proteins and is known to inhibit cAMP production. Thus, we developed live Föster Resonance Energy Transfer (FRET) imaging in cultured hippocampal neurons in order to measure basal cAMP/PKA pathway modulation downstream of endogenous CB1Rs in all neuronal compartments: in somata, in dendrites but also in the very thin mature axons. Our results show that CB1R displays differential pharmacology between axon and dendrites. Notably, its activation leads to a stronger decrease of PKA activity in axons compared to dendrites, due to increased number of membrane receptors in this compartment. Moreover, we demonstrate that somatodendritic CB1Rs constitutively inhibit cAMP/PKA pathway, while axonal receptors do not. This difference is due to polarized distribution of DAGLipase, the enzyme that synthesizes the major endocannabinoid 2-arachidonoylglycerol (2-AG). Moreover, blocking DAGL by pharmacological treatment modifies somatodendritic, but not axonal effects of several CB1R agonists, possibly through allosteric action. In a third part, we asked if the above results may be generalized to other GPCRs. Because the axonal targeting and in vitro pharmacology of 5-HT1B serotonin receptors demonstrate strong similarities with CB1Rs, we studied their neuronal pharmacology by using the previously developed FRET technique. We found similar differential responses to pharmacological treatments between axon and dendrites. In a fourth part, we investigated the role of the threonine 210 (T210) residue in the constitutive activity of neuronal CB1R. We showed that the hypoactive mutant T210A-CB1R do not constitutively recruit signaling pathways even in somatodendritic compartment, where 2-AG is present. This result demonstrates that T210 is necessary for constitutive CB1R activation by 2-AG.Finally, previous results of our group demonstrated the involvement of CB1R in neuronal development. Notably, CB1R activation was shown to have an overall inhibitory effect on the development of polarized neuronal morphology. We established a bibliographic review on this subject. The published literature data suggest that not only neuronal polarization influences both CB1R traffic and pharmacology but CB1Rs also contribute to the achievement of neuronal polarization. (...)

Page generated in 0.1469 seconds