Spelling suggestions: "subject:"neuronales"" "subject:"neuronale""
301 |
Algorithmische Optimierung von Teststrukturen zur Charakterisierung von Mikrosystemen auf WaferebeneStreit, Petra 04 April 2009 (has links)
Diese Diplomarbeit beschäftigt sich mit der Entwicklung von Teststrukturen zur
Charakterisierung von Mikrosystemen auf Waferebene. Sie dienen zur Bestimmung
von Prozesstoleranzen. Ziel dieser Arbeit ist es, einen Algorithmus zu entwickeln,
mit dem Teststrukturen optimiert werden können. Dazu wird ein Ansatz zur Optimierung
von Teststrukturen mittels eines Genetischen Algorithmus untersucht.
Grundlage für diesen ist eine Bewertung der Strukturen hinsichtlich der Sensitivität
gegenüber den Fertigungsparametern und der Messbarkeit der Eigenmoden.
Dem Leser wird zuerst ein Einblick in das Themengebiet und in die Verwendung von
Teststrukturen gegeben. Es folgen Grundlagen zur Fertigung und Messung von Mikrosystemen,
zur Parameteridentifikation, sowie zu Optimierungsalgorithmen. Anschließend
wird ein Bewertungs- und Optimierungskonzept, sowie eine Softwareimplementation
für die sich aus der Optmierung ergebenden Aufgaben, vorgestellt.
Unter anderem eine Eigenmodenerkennung mittels Neuronalem Netz und einer auf
der Vandermond’schen Matrix basierende Datenregression. Die Ergebnisse aus der
Umsetzung durch ein Testframework werden abschließend erläutert. Es wird gezeigt,
dass die Optimierung von Teststrukturen mittels Genetischem Algorithmus
möglich ist. Die dargestellte Bewertung liefert für die untersuchten Teststrukturen
nachvollziehbare Resultate. Sie ist in der vorliegenden Form allerdings auf Grund
zu grober Differenzierung nicht für den Genetischen Algorithmus geeignet. Entsprechende
Verbesserungsmöglichkeiten werden gegeben. / This diploma thesis deals with the development of test-structures for the characterization
of microsystems on wafer level. Test-structures are used for the determination
of geometrical parameters and material properties deviations which are
influenced by microsystem fabrication prozesses. The aim of this work is to establish
principles for the optimization of the test-structures. A genetic algorithm as
an approach for optimization is investigated in detail. The reader will get an insight
in the topic and the application of test-structures. Fundamentals of fabrication and
measurement methods of microsystems, the parameter identification procedure and
algorithms for optimization follow. The procedures and a corresponding software
implementation of some applied issues, which are needed for the optimization of
test structures, are presented. Among them are neural network algorithms for mode
identification and a data regression algorithm, based on Vandermonde Matrix.
Results of implemented software algorithms and an outlook conclude this work. It
is shown, that the optimization of test-structure using a genetic algorithm is possible.
An automated parameter variation procedure and the extraction of important
test-structures parameters like sensitivity and mode order are working properly.
However, the presented evaluation is not suitable for the genetic algorithm in the
presented form. Hence, improvements of evaluation procedure are suggested.
|
302 |
Contribution to quality and process optimisation in continuous casting using mathematical modellingBouhouche, Salah 28 November 2002 (has links)
Mathematical modelling using advanced approach based on the neural networks has been applied to the control and the quality optimisation in the main processes of steelwork such as the ladle metallurgical treatment and continuous casting. Particular importance has been given to the improvement of breakout prediction system and the reduction in the rate of false alarm generated by the conventional breakout detection system. Prediction of the chemical composition and temperature of liquid steel in the ladle has been achieved by neural networks and linear model. This prediction can be considered as a soft sensor. Slab surface temperature stabilisation on the basis of the casting events has been controlled by a neural networks algorithm, that gives an improvement in the surface temperature fluctuation in comparison to the conventional control system which is based on the PID controller. Quality monitoring and classification is also achieved by a neural network which is related to the breakout detection system. This technique achieves a classification of different defects based on the different alarm signal given by the breakout prediction system. Fault detection and process monitoring is developed using neural networks modelling. All models are developed on basis of practical operating database obtained from the iron and steel industry.
|
303 |
Neuronale Netze als Modell Boolescher FunktionenKohut, Roman 30 May 2007 (has links)
In der vorliegenden Arbeit werden die Darstellungsmöglichkeiten Boolescher Funktionen durch Neuronale Netze untersucht und eine neue Art von Booleschen Neuronalen Netzen (BNN) entwickelt. Das Basiselement Boolescher Neuronaler Netze ist ein neuartiges Boolesches Neuron (BN), das im Gegensatz zum klassischen Neuron direkt mit Booleschen Signalen operiert und dafür ausschließlich Boolesche Operationen benutzt. Für das Training der BNN wurde ein sequentieller Algorithmus erarbeitet, der eine schnelle Konvergenz garantiert und somit eine kurze Trainingzeit benötigt. Dieser Trainingsalgorithmus bildet die Grundlage eines neuen geschaffenen Verfahrens zur Architektursynthese der BNN. Das entwickelte Training stellt darüber hinaus ein spezielles Dekompositionsverfahren Boolescher Funktionen dar. Neuronale Netze können sowohl in Software als auch in Hardware realisiert werden. Der sehr hohe Aufwand der Hardware-Realisierung üblicher Neuronaler Netze wurde durch die Verwendung von BN und BNN wesentlich vereinfacht. Die Anzahl erforderlicher CLBs (configurable logic blocks) zur Realisierung eines Neurons wurde um 2 Größenordnungen verringert. Ein Boolesches Neuron wird direkt auf eine einzige LUT (lookup table) abgebildet. Für diese sehr kompakte Abbildung der BNN in eine FPGA-Struktur wurde der Trainingsalgorithmus des BNN angepasst. Durch die Spezifikation der BNN mit UML-Modellen und die Anwendung der MDA-Technologie zum Hardware/Software-Codesign konnte der Syntheseaufwand für Hardware-Realisierung von BNN signifikant verringert werden.
|
304 |
Aplicación de las redes neuronales artificiales para el pronóstico de la demanda de agua potable en la Empresa Epsel S.A. de la ciudad de LambayequeVidaurre Siadén, Yasmín Andrea January 2012 (has links)
La predicción de la cantidad demandada de agua potable es de gran importancia hoy en día para las corporaciones pertenecientes al sector saneamiento. Realiza esta predicción a mediano plazo es una necesidad vital para estas empresas, dado que de ello depende la satisfacción de los usuarios del servicio de saneamiento, los cuales se verían perjudicados en caso este servicio deje de trabajar en horas altamente criticas para ellos. El presente trabajo pretende demostrar que el empleo de técnicas computacionales basadas en inteligencia artificial, como las redes neuronales artificiales, reducen el nivel de error de las predicciones de la demanda de agua potable.
|
305 |
Sistema inteligente para identificar adecuadamente el mango Kent no exportable en el área de muestreo de una empresa agroindustrial de la región LambayequeRamos Adanaque, Elmer Antonio January 2021 (has links)
El presente trabajo de investigación tiene como objetivo realizar un sistema inteligente que permita identificar adecuadamente los mangos Kent no exportables en el área de muestreo de una empresa agroindustrial de la región de Lambayeque. Esto se dio gracias a la problemática que se logró encontrar en la empresa estudiada. Para llevar a cabo la solución, se plantearon tres objetivos específicos, estos son: implementar un algoritmo para el preprocesamiento de imágenes de entrada, implementar una red neuronal artificial para una identificación adecuada de los mangos no exportables y obtener la valoración de usabilidad de la solución de acuerdo con la percepción del usuario. Para poner en marcha todo esto, se plantearon dos metodologías a seguir. Estas fueron: La metodología de Machine Learning y la Programming extreme, una fue para crear el modelo computacional y la otra para el sistema web. Los resultados obtenidos por esta solución lograron satisfacer las necesidades planteadas por la entidad. Logrando así un 85% de asertividad al momento de pronosticar las imágenes cargadas.
|
306 |
Optimización de las dimensiones de placas mediante el uso de IA para reducir los costos en edificios de 6 pisos en el distrito de Miraflores / Optimization of shear wall dimensions through the use of AI to reduce costs in 6-storey buildings in the Miraflores districtSanchez Maguiña, Mildred Madeleine, Vidal Feliz, Pool Rusbel 06 July 2020 (has links)
En el presente artículo se investiga la implementación de las Redes Neuronales Artificiales como un tipo de Inteligencia Artificial con la finalidad de reducir los costos de concreto armado. Por esto, se propuso el uso de este tipo de algoritmo con el objetivo de optimizar las secciones de los muros de corte en edificaciones de 6 pisos sin irregularidades.
Se configuraron 10 redes neuronales distintas con el fin de elegir la que se adapte mejor a los datos empleados para el entrenamiento. En cada algoritmo se establecieron como variables de entrada el ancho y largo de la edificación; y la distancia entre luz máxima del eje X e Y. Sin embargo, el número de capas ocultas y el de neuronas en cada una de ellas fue distinto. En la etapa de entrenamiento se emplearon 30 casos con dimensiones optimizadas, con esto se obtuvo que la red neuronal predice la longitud total de la placa y su espesor con un error del 10%. / This article investigates the use of Artificial Neural Networks as a type of Artificial Intelligence in order to reduce the costs of reinforced concrete. For this reason, the use of this type of algorithm was proposed with the objective of optimizing the sections of the shear walls in 6-story buildings without irregularities.
Ten different neural networks were configured in order to choose the one that best suits the data used for training. In each algorithm, the width and length of the building; and the distance between maximum span of the X and Y axis were established as input variables. However, the number of hidden layers and the number of neurons in each of them was different. In the training stage, 30 cases with optimized dimensions were used, with this it was obtained that the neuronal network predicts the total length of the shear wall and its thickness with an error of 10%. / Trabajo de investigación
|
307 |
Modelación de la demanda en una fábrica de acumuladores, para la mejora de la toma de decisionesSaavedra Barroso, Cosme Raúl January 2017 (has links)
Publicación a texto completo no autorizada por el autor / Investigación cuyo propósito es el planteamiento de técnicas predictivas, basadas en las metodologías de los modelos de las Redes Neuronales Artificial o RNA, que permitan un mejor ajuste de las características de la curva de demanda, con un alto grado de validación estadística y correcta predicción del comportamiento futuro de dicha variable. / Tesis
|
308 |
Validation of the NVDLA architecture using its aws virtual prototype-FPGA co-simulation platformFreidenson Bejar, David Steven 23 May 2023 (has links)
La inferencia de Redes Neuronales Profundas (o DNNs, por sus siglas en inglés, Deep
Neural Networks) se ha vuelto cada vez más demandante en términos de almacenamiento de
memoria, complejidad computacional y consumo de energía. Desarrollar hardware especializado
en DNNs puede ser un proceso tedioso, que se alarga aún más si se considera el tiempo requerido
en escribir software para ello. Así, esta tesis consiste en la validación del acelerador de hardware
de redes neuronales NVDLA (por sus siglas en inglés, Nvidia Deep Learning Accelerator)
utilizando un ambiente de co-simulación basado en su plataforma híbrida: un CPU implementado
como Prototipo Virtual (PV), basado en el Quick Emulator (QEMU), y el modelo de hardware en
RTL del NVDLA dentro de un FPGA. Para ello, la arquitectura más portátil del NVDLA nv_small
es configurada en el FPGA de una instancia F1 del servicio E2C AWS. Para complementar el
sistema, el PV del NVDLA es usado, consistiendo de un CPU Arm emulado con QEMU,
ejecutando el sistema operativo Linux y el software runtime del NVDLA, dentro de una capa de
SystemC/TLM conectada al FPGA de la instancia F1 a través de un puerto PCIe. Una vez que la
plataforma híbrida de co-simulación está configurada, se ejecutan regresiones de pruebas de
hardware en la implementación en el FPGA para revisar la propia funcionalidad e integridad de
los bloques que componen al NVDLA. Luego, se ejecutan pruebas de sanidad de software en el
PV para confirmar la configuración correcta de todo el sistema integrado. Finalmente, la DNN
AlexNet es ejecutada. Los resultados muestran la propia funcionalidad del hardware y del PV, y
que la red AlexNet se ejecutó exitosamente en el ambiente de co-simulación, tomando
aproximadamente 112 minutos. / Deep neural network (DNN) inference has become increasingly demanding over the years
in terms of memory storage, computational complexity, and energy consumption. Developing
hardware targeting DNNs can be a lengthy process, which only grows if considered the time of
writing software for it. Therefore, this thesis consists of the validation of the NVDLA deep learning
hardware accelerator (NVDLA) using a co-simulation environment based on its hybrid platform:
a CPU implemented as a Virtual Prototype (VP) based on Quick Emulator (QEMU) and the
NVDLA RTL hardware model on a FPGA. For this, the more portable nv_small architecture of
the NVDLA is configured into the FPGA of a F1 instance from the EC2 AWS service. To
complement the system, the VP of the NVDLA is used, consisting of an Arm CPU emulated with
QEMU running a Linux OS and the NVDLA runtime software, inside a SystemC/TLM wrapper
connected to the F1 instance FPGA through a PCI express port. Once the hybrid co-simulation
platform is set up, hardware regression tests are run on the FPGA implementation in order to check
proper functionality and integrity of the NVDLA component blocks, sanity software tests are run
on the VP to check the correct setup of the whole stack, and finally the AlexNet DNN is executed.
The results showed proper hardware and VP functionality, and the AlexNet execution in the cosimulation
environment was successful, taking approximately 112 minutes.
|
309 |
Diagnóstico de perturbaciones mecánicas en accionamientos eléctricosBossio, José María 27 March 2012 (has links)
En los procesos industriales, y principalmente en aquellos de producción continua, es imprescindible implementar programas de mantenimiento preventivo y predictivo, a fin de evitar pa-radas indeseadas y disminuir costos de reparación. En muchos de estos procesos los motores de inducción (MI) constituyen un componente fundamental, lo que lleva al gran interés por parte de la industria de desarrollar técnicas de mantenimiento
predictivo de carácter no invasivo para estas máquinas. Por otra parte, a la hora de analizar faltas en un accionamiento eléctrico constituido por el conjunto motor-carga, general-mente son mayores los problemas asociados a la carga impul-sada que los del propio motor. Por esta razón, en el desarrollo de estrategias de diagnóstico es muy importante discriminar el origen de la falta (mecánico o eléctrico), como también detec-tar y diagnosticar correctamente las faltas asociadas a la carga. El objetivo de la presente tesis es el estudio de la detección y el diagnóstico de faltas de origen mecánico en accionamientos con MI, particularmente el análisis de técni-cas de detección y diagnóstico de faltas debidas a desbalan-ces mecánicos, desalineación, excentricidad, y su discrimina-ción de estas con aquellas que ocasionan faltas de caracterís-ticas similares, particularmente las debidas a rotura de barras del rotor. Para ello se presentan modelos matemáticos del accionamiento, el cual incluye el modelo del MI y la carga impulsada. Se modelan además los efectos causados por la
presencia de irregularidades en la carga: desbalance, desali-neación en el acoplamiento motor-carga, y excentricidad. Mediante estos modelos se realiza el análisis por simulación de diferentes técnicas de detección de faltas basadas en la medición de variables eléctricas. Las estrategias estudiadas y simuladas son luego validadas experimentalmente a partir de datos obtenidos en bancos de ensayos que permiten emular las faltas particulares en estudio, y de mediciones realizadas en la industria. En lo referente a las faltas originadas debido a desalineación, los resultados obtenidos son comparados con
estrategias comúnmente usadas en la industria: vibraciones mecánicas y termografía infrarroja. Se propone también un observador adaptivo de estructura variable que permite
estimar velocidad y par de carga, en base a las mediciones de tensiones y corrientes del motor. Con esta propuesta se obtiene una estimación de la perturbación de par de carga,
que puede usarse para el diagnóstico de faltas, como también para su compensación en el caso de un accionamiento a lazo cerrado. Se presenta además dos aplicaciones para el diagnós-tico automático de faltas mediante el uso de redes neuronales no supervisadas del tipo mapa auto-organizados (Self-Organi-zing Maps - SOM). Dichas aplicaciones permiten la clasifica-ción de las faltas con una mínima interpretación por parte del especialista. En cuanto a la primera red, se creó e implemento en el diagnóstico de faltas producidas por desbalances mecá- nicos en máquinas accionadas mediante motores de inducción y por desalineación entre los ejes motor-carga. La segunda red, se creó e implemento bajo la necesidad de detectar las faltas que presentan síntomas de características similares, es decir, que poseen en el análisis del espectro de la corriente las mismas frecuencias características de faltas, como ser el caso de barras rotas y cargas oscilantes de baja frecuencia.
Los resultados obtenidos en el presente trabajo de tesis afirman la posibilidad de detección de faltas de origen tanto eléctrico como mecánico mediante las técnicas estudiadas, basadas en la medición de variables eléctricas. / In industrial processes, mainly in those of continuous pro-duction, it is necessary to implement preventive and predic-tive maintenance programs in order to prevent unwanted stops and reduce repair costs. In many of these processes, induction motors (IM) constitutes a major component, leading to great interest from industry to develop non-invasive predictive maintenance techniques for these machines. On the other hand, when analyzing faults in an electric drive consisting of motor-load set, problems associated with the driven load of the motor are generally more important than those of the electric machine itself. For this reason, the deve-lopment of diagnostic strategies is very important to distin-guish the origin of the fault (mechanical or electrical) as well as to detect and correctly diagnose the faults associated with the load. The objective of this thesis is to study the detection and diagnosis of mechanical faults in actuators with MI, and particularly the analysis of techniques to detect faults
due to mechanical unbalance and misalignment.With this aim, a mathematical model of the drive, which includes the IM model and the driven load, is presented. The effects of the of irregularities in the load, particularly imbalance and misa-lignment in the motor-load coupling are also included in the model. Using these models, a simulation analysis of different fault detection techniques based on measurement of electri-cal variables is performed. Studied and simulated strategies are then validated experimentally, using data from bench testing to emulate the faults studied and measurements made in the industry. The results of these strategies are compared with commonly used strategies in the industry: mechanical vibration and infrared thermography. An adaptive variable structure observer (sliding mode observer) to estimate speed
and load torque is also proposed. The estimation is performed using the measurements of voltages and currents and the motor model. This proposal provides an estimate of the dis-turbance load torque which can be used to diagnose faults, as well as for compensation in case of a closed-loop drive.
A method for automatic diagnosis of faults using unsupervised neural networks is also presented. This method allows the classification of faults with a minimal interpretation by the specialist. The obtained results affirm the possibility of de-tecting faults of both electrical and mechanical origin through the techniques studied, based on the measurement of
electrical variables.
|
310 |
Expansión de la capacidad de los filtros convolucionales en redes neuronalesLarregui, Juan Ignacio 10 May 2021 (has links)
En los últimos años el campo de la Visión Artificial ha experimentado un crecimiento
acelerado con el éxito de las Redes Neuronales Artificiales y el Aprendizaje Profundo. La
cantidad de datos etiquetados que se han relevado, las mejoras en hardware especializado
y las importantes modificaciones introducidas en los algoritmos tradicionales surgidos en
la segunda mitad del siglo pasado han posibilitado el avance en problemas complejos que
parecían imposibles de abordar pocos años atrás.
En particular, las Redes Neuronales Convolucionales se han convertido en el modelo
más popular dentro de este campo de las Ciencias de la Computación. A lo largo de la
década del 2010, los trabajos que avanzaron el estado del arte en los diferentes problemas
de la Visión Artificial han incluido casi exclusivamente redes de este tipo. Sin embargo,
algunos componentes de las Redes Convolucionales han mantenido sus estructuras y definiciones originales. Este es el caso de los filtros convolucionales, los cuales han mantenido
su estructura geométrica estática en las últimas décadas.
El objetivo general de esta tesis es explorar las limitaciones inherentes a la estructura
tradicional de los filtros convolucionales, proponiendo nuevas definiciones y operaciones
para superar las mismas. En esta línea, se presenta una generalización de la definición de
los filtros convolucionales, extendiendo el concepto de dilatación de los mismos a intervalos continuos sobre las dimensiones espaciales. Adicionalmente, se presenta una nueva
definición de la Convolución Dilatada para permitir comportamientos dinámicos durante
el proceso de entrenamiento. Basadas en las definiciones introducidas, se proponen las
nuevas operaciones de Convolución de Dilatación Adaptativa y Convolución de Dilatación
Aleatoria. La primera introduce a las redes convolucionales la capacidad de optimizar la
dilatación de los filtros de acuerdo a los datos de entrada, de manera de adaptarse dinámicamente a los cambios semánticos y geométricos presentes en las diferentes escenas. La
segunda permite explorar la utilización de filtros de dilataciones aleatorias para simular
transformaciones de escala, con el objetivo de aumentar la invariancia a escala de una
red convolucional, una de sus limitaciones más conocidas.
Finalmente, se definieron casos de estudio para Clasificación de Imágenes y Segmentación Semántica, de manera de obtener métricas cuantitativas que permitan evaluar las
propuestas realizadas. Se realizaron múltiples entrenamientos de diferentes arquitecturas
y configuraciones para redes conocidas en la literatura, mostrando resultados favorables
con la inclusión de las operaciones propuestas. Más aún, el diseño de estas es modular,
por lo que pueden ser incluidas en arquitecturas arbitrarias. / In the last years, the field of Computer Vision has seen incredible success through
the adoption of Artificial Neural Networks and Deep Learning. The amount of labeled
data, the improvements in specialized hardware, and further development in the traditional algorithms, have enabled advances in complex problems that seemed impossible to
approach a few years before.
In particular, these networks have become the most popular models within this field
of Computer Sciences. Throughout the last decade, the state-of-the-art research in the
different Computer Vision problems had almost exclusively included this type of model.
However, the structure of some components of Convolutional Networks has remained
almost unaffected. This is the case with convolutional filters, which have kept their original
geometric structure in the last decades.
The overall goal of this thesis is to explore the limitations inherent to the traditional
structure of the convolutional filters, introducing new definitions and operations to overcome them. In this context, a generalization of the definition of convolutional filters is
presented, extending the concept of dilation to continuous intervals in the spatial dimensions. Additionally, a new definition for the Dilated or Atrous Convolution is proposed,
which enables dynamic behaviors in the dilation of the filters during the training process.
Based on these new definitions, two new operations are presented: the Adaptive Dilation
Convolution and the Random Dilation Convolution. The first one introduces the capacity
for Convolutional Networks to optimize the dilation of the filters according to the input
data, dynamically adapting to the semantic and geometric differences found across scenes. The second, enables the exploration of random dilations to simulate different scale
transformations in the data, aiming to increase the scale invariance of these networks,
one of their known limitations.
Finally, different study cases were defined for Image Classification and Semantic Segmentation, in order to evaluate the introduced operations using quantitative metrics.
Several training experiments were performed, using different architectures and configurations for renowned networks, showing positive results during the inclusion of the proposed
operations. Moreover, their design is modular, enabling them to be included in arbitrary
architectures.
|
Page generated in 0.0668 seconds