Spelling suggestions: "subject:"neurone moteur"" "subject:"aleurone moteur""
1 |
Mécanismes moléculaires de la fragmentation de l' appareil de Golgi dans les maladies du neurone moteurBellouze, Sarah 12 December 2012 (has links)
La fragmentation de l'appareil de Golgi représente un des changements les plus précoces et les plus répandus dans les maladies neurodégénératives. Afin de comprendre les mécanismes moléculaires de ces changements, j'ai étudié deux modèles expérimentaux de maladie du neurone moteur. 1. Les souris pmn (progressive motor neuronopathy) : Celles-ci sont atteintes d'une forme très grave de dégénérescence des neurones moteurs et des défauts moléculaires sont liés à une mutation faux-sens d'une protéine localisée au niveau du Golgi, la chaperonne des tubulines TBCE, identifiée par (Martin, Jaubert et al. 2002; Schaefer, Schmalbruch et al. 2007). Au cours de ma thèse, nous avons identifié des anomalies importantes du Golgi dans les neurones moteurs lombaires de souris pmn et déterminé leur relevance fonctionnelle ainsi que les mécanismes moléculaires. D'après les immunomarquages et la modélisation 3D des membranes, la fragmentation et l'atrophie du Golgi dans les neurones lombaires moteurs pmn ressemblent à celles rapportées dans la SLA et se produit dans des cinétiques similaires. Les analyses en microcopie électronique montrent que l'empilement des citernes golgiennes est progressivement remplacé par des petites vésicules. Les analyses biochimiques révèlent : 1/ une redistribution cytosolique des protéines d'arrimage tel que GM130, 2/ une diminution des protéines β-COP et 3/ une augmentation considérable des protéines golgiennes d'amarrage v-SNARE GS15 et GS28 contrôlant la fusion des vésicules. / Fragmentation of the Golgi apparatus represents one of the earliest and most constant pathological changes in neurodegenerative diseases. To understand the molecular mechanisms of these changes I investigated two experimental models of motor neuron diseases. 1. pmn mice with progressive motor neuronopathy. The pmn mice were chosen since they suffer from a very aggressive form of motor neuron degeneration and since their molecular defects represents a missense mutation in a Golgi-localized tubulin chaperone TBCE, as shown by previous (Martin et al 2002, Schäfer et al 2007). In the last years, we identified severe Golgi abnormalities in motor neurons of pmn mice and dissected out their functional relevance and molecular mechanisms. According to immunolabelings and 3D membrane modelings, Golgi fragmentation and atrophy in lumbar pmn motor neurons resembled those reported in human ALS and proceeded with similar kinetics. Electron microscopy illustrated that Golgi cisternae were progressively transformed into small vesicles. Biochemical analyses revealed : 1/ a cytosolic redistribution of tethering factor such as GM130, 2/ a decrease in β-COP protein level and 3/ a massive increase in the Golgi v-SNARE proteins GS15 and GS28 controlling vesicle fusion. These pathological changes were due to loss of TBCE expression since they could be rescued by transgenic expression of wildtype TBCE but not mimicked by sciatic nerve axotomy. They involved defective dynamics of Golgi-derived microtubules rather than accumulation of misfolded tubulins as shown by the differential effects of TBCE-depletion, Nocodazole and a folding-incompetent tubulin mutant.
|
2 |
Excitabilité intrinsèque, couverture synaptique et vacuolisation dendritique des motoneurones spinaux chez la souris SOD1-G93A, modèle de la Sclérose Latérale Amyotrophique / Intrinsic excitability, synaptic coverage and dendritic vacuolation of spinal motoneurons in SOD1-G93A mice, model of Amyotrophic Lateral SclerosisDelestrée, Nicolas 27 October 2014 (has links)
Les motoneurones tiennent une place remarquable dans l'organisme : ils constituent l'interface entre le système nerveux central et le système musculaire. Leur excitabilité est une caractéristique primordiale dans le comportement moteur puisqu'elle définit la force musculaire développée en réponse à la commande motrice. Chez la souris, la décharge des motoneurones est marquée par la présence d'oscillations de mode mixte (MMOs) entre les potentiels d'action. Ces MMOs permettent la décharge des motoneurones à basse fréquence et sont responsables d'un régime de décharge particulier nommé zone sous-Primaire, pendant lequel la fréquence de décharge est très variable et le gain de la relation courant-Fréquence élevé. Nous avons étudié les mécanismes responsables de l'apparition de ces MMOs à la fois de manière expérimentale, dans une préparation in vivo de souris anesthésié, incluant l'utilisation du Dynamic Clamp, et théorique, au moyen d'un modèle mono-Compartimental de motoneurone. Nos résultats ont montré que ces MMOs étaient causées par les courants sodiques et potassiques responsables des potentiels d'action et qu'elles émergeaient d'un état de faible excitabilité de la membrane, dû à l'inactivation lente des courants sodiques. Nous avons également montré que le courant de post-Hyperpolarisation pouvait paradoxalement augmenter l’excitabilité des motoneurones et réduire les MMOs en dé-Inactivant le courant sodique. La Sclérose Latérale Amyotrophique (SLA) conduit à la dégénérescence spécifique de ces motoneurones qui s'accompagne d'une vacuolisation de leur arborisation dendritique. L'augmentation précoce de l'excitabilité des motoneurones dans la maladie a largement été évoquée pour rendre compte de leur atteinte. Une hyperexcitabilité, aussi bien d'origine intrinsèque qu'extrinsèque pourrait en effet produire une excitotoxicité délétère pour la cellule. Si une telle modification de l'excitabilité est en cause dans la maladie, elle devrait persister jusqu'aux âges auxquels se produisent les premières dénervations des jonctions neuromusculaires. Nous avons enregistré les propriétés électrophysiologiques des motoneurones dans une préparation in vivo de souris adultes SOD1-G93A, modèle de la SLA. Nos résultats ont montré que leur conductance d'entrée était augmentée dans les jours qui précèdent les premières dénervations de leurs jonctions neuromusculaires. Malgré cela, leur excitabilité n'était pas modifiée. Loin d'être intrinsèquement hyperexcitables, une fraction d'entre eux perdaient même leur capacité à décharger de manière répétée. Nous avons finalement étudié la vacuolisation qui prend place dans les dendrites des motoneurones au cours de la maladie et son lien avec la couverture synaptique. Nous avons montré que la vacuolisation dendritique prenait place avant les dénervations et que la taille des vacuoles augmentait avec l'âge des souris SOD1-G93A. De manière intéressante, cette progression semblait plus rapide dans les motoneurones les plus sensibles à la maladie. Bien que la couverture synaptique n'était pas modifiée au cours de la maladie, nous avons mis en évidence une densité de synapses excitatrices et inhibitrices plus importante sur les régions dendritiques qui se vacuolisent. Ces résultats suggèrent un lien entre l'activité synaptique et la formation de vacuoles dans les motoneurones au cours de la SLA. Les motoneurones ne présentant pas d'hyperexcitabilité intrinsèque, une excitotoxicité d'origine synaptique pourrait alors être responsable de leur dégénérescence. / Motoneurones hold a remarkable position in the organism: they are the interface between the central nervous system and the muscular system. Their excitability is a crucial characteristic in motor behavior since it determines the muscular force produced in response to motor command. In mice, motoneurone discharge is marked by the presence of sub-Threshold oscillations between action potentials which create a behavior of mixed mode oscillations (MMOs). These MMOs allow the motoneurones to fire at low frequency and are responsible for a sub-Primary range of discharge during which the firing frequency is irregular and the slope of current-Frequency relation is steep. We investigated the mechanisms responsible for these MMOs by in vivo recordings in anesthetized mice, using Dynamic Clamp, and by theoretical modelization in a monocompartimental model of motoneurone. Our results showed that MMOs were caused by sodium and potasium currents responsible for action potentials and that they emerged from a state of low membrane excitability caused by a slow inactivation of the sodium current. Paradoxically, we also showed that the after-Hyperpolarization current was able to increase the membrane excitability and to reduce MMOs by de-Inactivating the sodium current. Amyotrophic Lateral Sclerosis (ALS) leads to the specific degeneration of these motoneurones and is accompanied by a vacuolation of their dendritic trees. An early increase in motoneurons excitability during the disease has been widely proposed to account for their degeneration. Indeed, a motoneuron hyperexcitability of intrinsic or extrinsic origin could produce a deleterious excitotoxicity. If such a change of excitability is involved in the disease, it should last until the ages where the first denervation of neuromuscular junctions occurs. We recorded the electrophysiological properties of motoneurones in an in vivo preparation of adult SOD1-G93A mice, model of ALS. Our results showed that their input conductance was increased before the first denervation of their neuromuscular junctions. Nevertheless, their excitability was not modified. Far from being intrinsically hyperexcitable, a fraction of them even lost their ability to discharge repeatedly. We finally studied the vacuolation that takes place in dendrites of motoneurones during the disease and its relation with synaptic coverage. We have shown that the dendritic vacuolation takes place before the denervation and that the size of these vacuoles increases with age in SOD1-G93A mice. Interestingly, this increase was faster in the most vulnerable motoneurones. Although synaptic coverage was not altered in the disease, we ¬revealed higher densities of excitatory and inhibitory synapses on dendritic regions that vacuolate. These results suggest a link between synaptic activity and vacuoles formation in motoneurones during ALS. Motoneurones were not intrinsically hyperexcitable, instead, an excitotoxicity from a synaptic origin may be responsible for their degeneration.
|
Page generated in 0.0406 seconds