• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Parameter Selection Problem in the Newton-ADI Iteration for Large Scale Riccati Equations

Benner, Peter, Mena, Hermann, Saak, Jens 26 November 2007 (has links) (PDF)
The numerical treatment of linear-quadratic regulator problems for parabolic partial differential equations (PDEs) on infinite time horizons requires the solution of large scale algebraic Riccati equations (ARE). The Newton-ADI iteration is an efficient numerical method for this task. It includes the solution of a Lyapunov equation by the alternating directions implicit (ADI) algorithm in each iteration step. On finite time intervals the solution of a large scale differential Riccati equation is required. This can be solved by a backward differentiation formula (BDF) method, which needs to solve an ARE in each time step. Here, we study the selection of shift parameters for the ADI method. This leads to a rational min-max-problem which has been considered by many authors. Since knowledge about the complete complex spectrum is crucial for computing the optimal solution, this is infeasible for the large scale systems arising from finite element discretization of PDEs. Therefore several alternatives for computing suboptimal parameters are discussed and compared for numerical examples.
2

On the Parameter Selection Problem in the Newton-ADI Iteration for Large Scale Riccati Equations

Benner, Peter, Mena, Hermann, Saak, Jens 26 November 2007 (has links)
The numerical treatment of linear-quadratic regulator problems for parabolic partial differential equations (PDEs) on infinite time horizons requires the solution of large scale algebraic Riccati equations (ARE). The Newton-ADI iteration is an efficient numerical method for this task. It includes the solution of a Lyapunov equation by the alternating directions implicit (ADI) algorithm in each iteration step. On finite time intervals the solution of a large scale differential Riccati equation is required. This can be solved by a backward differentiation formula (BDF) method, which needs to solve an ARE in each time step. Here, we study the selection of shift parameters for the ADI method. This leads to a rational min-max-problem which has been considered by many authors. Since knowledge about the complete complex spectrum is crucial for computing the optimal solution, this is infeasible for the large scale systems arising from finite element discretization of PDEs. Therefore several alternatives for computing suboptimal parameters are discussed and compared for numerical examples.

Page generated in 0.0953 seconds