• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of anistropy in charged fluids

Alderton, Dale Wayne 28 February 2008 (has links)
Abstract A computer program has been written to simulate the conditions of the early uni- verse and to test a new idea in the mechanism of structure formation observed in our universe today. The model utilises Newtonian hydrodynamic equations includ- ing gravitational and electromagnetic forces in two spatial dimensions. It is proposed that augmenting gravitational forces with plasma forces will complement the prob- lematic Big Bang theory of structure formation which relies on gravity alone. Two sets of initial conditions are tested and the products of the simulation are analysed in a statistical way using power spectra and the two-point correlation function. Differ- ences in the initial conditions were not seen to produce significantly different results. The results show that the Hubble expansion term significantly reduces power in the gravity models but plasma forces can retain power better than similar gravitation- only models. Initial velocity perturbations significantly modify the power spectrum gradient in the higher modes. Some power spectra displayed a definite bend in gra- dient at a scale which is verified by galaxy survey observations. Plasma forces also appear to cluster matter on smaller scales more efficiently than gravity alone. Thus, this simulation lays a foundation for a more detailed and realistic model that may be compared with real matter distribution observations.

Page generated in 0.0869 seconds