• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of thermal processing on the tribology of nanocrystalline Ni/TiO2 coatings

Cooke, Kavian O., Khan, Tahir I. 18 October 2018 (has links)
yes / The tribological performance of a nanocrystalline coating is heavily influenced by its composition, morphology, and microstructural characteristics. This research work describes the effect of heat treatment temperature on the microstructural, morphological, and mechanical behavior of nanocrystalline Ni/TiO2 coatings produced by electrophoresis. The surface morphology and coating cross section were characterized by scanning electron microscopy (SEM). The composition of coatings and the percentage of TiO2 nanoparticles incorporated in the Ni matrix were studied and estimated by using an energy-dispersive spectroscopic (EDS) analysis, while x-ray diffractometry (XRD) was used to investigate the effect of heat treatment temperature on phase structure. The results showed agglomeration of TiO2 nanoparticles on the surface of the coating. The high hardness and wear resistance recorded for the as-deposited coating was attributed to the uniform distribution of TiO2 nanoparticle clusters throughout the cross section of the coating. Heat treatment of the Ni/TiO2 coatings to temperatures above 200 °C led to significant grain growth that changed the surface morphology of the coating and reduced the strengthening effects of the nanoparticles, thus causing a reduction in the hardness and wear resistance of the coatings.

Page generated in 0.3348 seconds