• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de catalisadores de Rh/Ni/YSZ e Ru/Ni/YSZ para a reforma interna de etanol em ânodos de células a combustível de óxido sólido / Development of Rh/Ni/YSZ and Ru/Ni/YSZ for the ethanol steam reforming in anode of solid fuel cells

Oliveira, Drielly Cristina de 18 September 2012 (has links)
Neste trabalho, investigou-se a atividade catalítica de materiais a base de Ni/YSZ modificados com Rh ou Ru a 0,5%, 1% e 3%, para a reforma a vapor de etanol (RVE) e seus desempenhos como eletrocatalisadores em células a combustível de óxido sólido (SOFCs - Solid Oxide Fuel Cell). Os catalisadores foram preparados pelo método Pechini e de impregnação. A caracterização estrutural foi realizada utilizando-se as técnicas de Energia Dispersiva de Raios X, Difratometria de Raios X, Redução à Temperatura Programada, Fisissorção de Nitrogênio, Microscopia Eletrônica de Varredura e Análise Elementar. Os testes catalíticos foram realizados a 700 e 900 °C, em uma linha de reação acoplada a um cromatógrafo a gás para o monitoramento dos produtos reacionais gasosos. Os produtos líquidos resultantes da RVE foram analisados por Cromatografia Líquida de Alta Eficiência (CLAE). O objetivo principal foi correlacionar a estrutura e a composição destes materiais com a produção de H2, distribuição de outros produtos reacionais e formação de depósitos de carbono. Os resultados obtidos mostraram que a incorporação de Rh ou Ru no catalisador de Ni/YSZ não resultou em mudanças significativas na estrutura e atividade catalítica, porém promoveu uma diminuição na quantidade de carbono formado, sendo mais expressiva para o caso da adição de Rh. O aumento da temperatura de reação de 700 °C para 900 °C resultou em um aumento da seletividade dos catalisadores para os produtos gasosos e diminuição da formação de coque. O estudo em uma célula unitária de SOFC foi conduzido utilizando-se platina no cátodo e 3%Rh/40%Ni/YSZ(P) no ânodo, em uma célula operando com H2 e ar a 900 °C. Embora as curvas de polarização tenham apresentado baixas densidades de potência, os resultados mostraram que o material de 3%Rh/40%Ni/YSZ(P) foi ativo para a produção e eletro-oxidação de H2 em condições reais de operação das SOFCs. Além disso, mostrou-se que é possível investigar a atividade de eletrocatalisadores de ânodos de SOFC para a reforma de etanol em linhas de reação comumente utilizadas em estudos de catálise heterogênea. / In this work, it was investigated the electrocatalytic activity of Ni/YSZ promoted with Rh or Ru (0.5 wt%, 1.0 wt% and 3.0 wt% content) for the Ethanol Steam Reforming (ESR) reaction, and their performance as electrocatalysts in Solid Oxide Fuel Cells (SOFCs). The catalysts were prepared by the Pechini and Impregnation methods. The material characterization was carried out by Energy Dispersive X-ray (EDX), X-ray Diffraction (DRX), Temperature Programmed Reduction (TPR-H2), N2 physisorption, Scanning Electron Microscopy (SEM), and Elemental Analysis. The catalytic tests were performed at 700 and 900 °C in a reaction system coupled to a gas chromatograph in order to monitor the gaseous products. The liquid products were analyzed by High Performance Liquid Chromatography (HPLC). The structure and composition of these catalysts were correlated to the H2 formation, with the distribution of other parallel reaction products, including the carbon deposition. The obtained results showed that the incorporation of Rh or Ru does not change significantly the structure and catalytic activity, but it decreases the carbon deposits, being more significant for the addition of Rh. The increase of the reaction temperature from 700 °C to 900 °C increased the gaseous products selectivities and decreased the carbon deposition. The study in SOFC unit cells were conducted using platinum and 3%Rh/40%Ni/YSZ(P) in the cathode and anode, respectively. The SOFC operated with H2 and air, and 900 °C. Although the polarization curves have presented low power densities, the obtained results showed that the 3%Rh/40%Ni/YSZ(P) electrocatalyst was active for the H2 production and eletro-oxidation in the SOFC real operation conditions. Furthermore, the results have demonstrated that it is possible to investigate SOFC electrocatalysts activity for the ethanol steam reforming in reaction lines commonly utilized in heterogeneous catalysis studies.
2

Desenvolvimento de catalisadores de Rh/Ni/YSZ e Ru/Ni/YSZ para a reforma interna de etanol em ânodos de células a combustível de óxido sólido / Development of Rh/Ni/YSZ and Ru/Ni/YSZ for the ethanol steam reforming in anode of solid fuel cells

Drielly Cristina de Oliveira 18 September 2012 (has links)
Neste trabalho, investigou-se a atividade catalítica de materiais a base de Ni/YSZ modificados com Rh ou Ru a 0,5%, 1% e 3%, para a reforma a vapor de etanol (RVE) e seus desempenhos como eletrocatalisadores em células a combustível de óxido sólido (SOFCs - Solid Oxide Fuel Cell). Os catalisadores foram preparados pelo método Pechini e de impregnação. A caracterização estrutural foi realizada utilizando-se as técnicas de Energia Dispersiva de Raios X, Difratometria de Raios X, Redução à Temperatura Programada, Fisissorção de Nitrogênio, Microscopia Eletrônica de Varredura e Análise Elementar. Os testes catalíticos foram realizados a 700 e 900 °C, em uma linha de reação acoplada a um cromatógrafo a gás para o monitoramento dos produtos reacionais gasosos. Os produtos líquidos resultantes da RVE foram analisados por Cromatografia Líquida de Alta Eficiência (CLAE). O objetivo principal foi correlacionar a estrutura e a composição destes materiais com a produção de H2, distribuição de outros produtos reacionais e formação de depósitos de carbono. Os resultados obtidos mostraram que a incorporação de Rh ou Ru no catalisador de Ni/YSZ não resultou em mudanças significativas na estrutura e atividade catalítica, porém promoveu uma diminuição na quantidade de carbono formado, sendo mais expressiva para o caso da adição de Rh. O aumento da temperatura de reação de 700 °C para 900 °C resultou em um aumento da seletividade dos catalisadores para os produtos gasosos e diminuição da formação de coque. O estudo em uma célula unitária de SOFC foi conduzido utilizando-se platina no cátodo e 3%Rh/40%Ni/YSZ(P) no ânodo, em uma célula operando com H2 e ar a 900 °C. Embora as curvas de polarização tenham apresentado baixas densidades de potência, os resultados mostraram que o material de 3%Rh/40%Ni/YSZ(P) foi ativo para a produção e eletro-oxidação de H2 em condições reais de operação das SOFCs. Além disso, mostrou-se que é possível investigar a atividade de eletrocatalisadores de ânodos de SOFC para a reforma de etanol em linhas de reação comumente utilizadas em estudos de catálise heterogênea. / In this work, it was investigated the electrocatalytic activity of Ni/YSZ promoted with Rh or Ru (0.5 wt%, 1.0 wt% and 3.0 wt% content) for the Ethanol Steam Reforming (ESR) reaction, and their performance as electrocatalysts in Solid Oxide Fuel Cells (SOFCs). The catalysts were prepared by the Pechini and Impregnation methods. The material characterization was carried out by Energy Dispersive X-ray (EDX), X-ray Diffraction (DRX), Temperature Programmed Reduction (TPR-H2), N2 physisorption, Scanning Electron Microscopy (SEM), and Elemental Analysis. The catalytic tests were performed at 700 and 900 °C in a reaction system coupled to a gas chromatograph in order to monitor the gaseous products. The liquid products were analyzed by High Performance Liquid Chromatography (HPLC). The structure and composition of these catalysts were correlated to the H2 formation, with the distribution of other parallel reaction products, including the carbon deposition. The obtained results showed that the incorporation of Rh or Ru does not change significantly the structure and catalytic activity, but it decreases the carbon deposits, being more significant for the addition of Rh. The increase of the reaction temperature from 700 °C to 900 °C increased the gaseous products selectivities and decreased the carbon deposition. The study in SOFC unit cells were conducted using platinum and 3%Rh/40%Ni/YSZ(P) in the cathode and anode, respectively. The SOFC operated with H2 and air, and 900 °C. Although the polarization curves have presented low power densities, the obtained results showed that the 3%Rh/40%Ni/YSZ(P) electrocatalyst was active for the H2 production and eletro-oxidation in the SOFC real operation conditions. Furthermore, the results have demonstrated that it is possible to investigate SOFC electrocatalysts activity for the ethanol steam reforming in reaction lines commonly utilized in heterogeneous catalysis studies.
3

Effet de H2S sur la structure et les performances électriques d’une anode SOFC / Effect of H2S on SOFC anode structure and electrical performances

Mai Thi, Hai Ha 30 January 2014 (has links)
Une SOFC peut être alimentée en biogaz sans reformage préliminaire du fait de sa température de fonctionnement élevée. Cependant, la présence de polluants comme le soufre peut empoisonner les électrodes. Cette thèse se concentre sur la compréhension des effets de H2S sur la structure de l'anode et les performances électriques. Spectroscopie Raman, imagerie optique et spectroscopie d'impédance ont été utilisées in situ pour évaluer la cinétique de sulfuration et les modifications morphologiques de Ni et Ni-CGO en présence de H2S à différentes températures. Les performances électriques de Ni-YSZ/YSZ/Pt ont été mesurées à 500°C à l'abandon et sous polarisation (500 mV). Un circuit électrique avec une impédance de concentration du second ordre est proposé. Les caractéristiques de l'anode avec combustibles propre et pollué sont discutées à partir des formes et des décompositions des spectres. Les corrélations entre propriétés électriques et accumulation de sulfure de nickel sont présentées. / A Solid Oxide Fuel Cell (SOFC) can be fed with biogas without a preliminary reforming due to its high operating temperature. However, the biogas contains numerous pollutants like sulfur which poison the electrodes. This thesis focuses on the understanding of the H2S impacts on the anode structure and electrical performances. Raman Spectroscopy, optical imagery and Impedance Spectroscopy have been used in situ to evaluate the sulfidation kinetics and the morphological changes of Ni and Ni-CGO pellets exposed to H2S at various temperatures. The electrical performances of Ni-YSZ/YSZ/Pt cells under open circuit and 500 mV-polarizing conditions at 500°C have been measured. An electrical circuit with a second-order concentration impedance is proposed. The anode behaviors in clean and polluted fuel are discussed based on the evolutions of impedance shapes and on the fitted parameters. Correlations between the electrical properties and the build-up of nickel sulfide are presented.
4

Fabrication et étude du comportement électrochimique en atmosphère réductrice de couches minces à base de cérine en vue de leur interaction dans des dispositifs électrochimiques à oxyde solide

Medina-Lott, Bianca 27 September 2012 (has links) (PDF)
L'abaissement de la température de fonctionnement des SOFC vers 600-750°C est un impératif incontournable pour en augmenter la durée de vie et permettre l'utilisation d'interconnecteurs moins onéreux. Cependant, ceci s'accompagne d'une incrémentation de la chute ohmique de l'électrolyte et des surtensions aux électrodes et, par conséquent, la diminution des performances électrochimiques de la pile. Différentes solutions sont à explorer : substituer l'électrolyte, diminuer la résistance de l'électrolyte usuel en réduisant son épaisseur (<5 µm) et, de toute façon, en améliorant les réactions aux interfaces par adjonction de couches minces fonctionnelles. D'une part, cette étude analyse différentes approches d'élaboration de couches minces de CeO2 et de cérine dopée, dont le rôle est avéré, notamment au niveau de l'oxydation à l'anode : le dépôt par couches atomiques, ALD (Atomic Layer Deposition), et le dépôt chimique en solution CBD (Chemical Bath Deposition) ont été explorés. D'autre part, l'exploitation d'un nouveau matériau composite (cérine dopée au gadolinium et Li2CO3-K2CO3 à l'état fondu) est analysée en tant que matériau d'électrolyte pour les SOFC. Finalement, les propriétés électrochimiques de ces électrolytes, combinés à des couches minces de cérine et de cérine dopée préparées par ALD, sont étudiées en particulier en conditions anodiques. Le but global est d'explorer le rôle des couches minces et de nouveaux électrolytes prometteurs, essentiellement dans les conditions anodiques des SOFC.
5

The Processing and Characterization of Porous Ni/YSZ and NiO/YSZ Composites used in Solid Oxide Fuel Cell Applications

Clemmer, Ryan January 2006 (has links)
A solid oxide fuel cell (SOFC) is an energy conversion device that has the potential to efficiently generate electricity in an environmentally-friendly manner. In general, a SOFC operates between 750&deg;C and 1000&deg;C utilizing hydrogen or hydrocarbons as fuel and air as an oxidant. The three major components comprising a fuel cell are the electrolyte, the cathode, and the anode. At present, the state-of-the-art SOFC is made from a dense yttria-stabilized zirconia (YSZ) electrolyte, a porous lanthanum manganite cathode, and a porous nickel/YSZ composite anode. With the advent of the anode-supported SOFC and the increased interest in using a wider range of fuels, such as those containing sulphur, knowledge of the anode properties is becoming more important. <br /> The properties of the current anodes are limited due to the narrow range of nickel loadings imposed by the minimum nickel content for electrical conductivity and the maximum allowable nickel loading to avoid thermal mismatch with the YSZ electrolyte. In addition, there is little research presented in the literature regarding the use of nickel metal as a starting anode material, rather than the traditional nickel oxide powder, and how porosity may affect the anode properties. <br /> The purpose of this investigation is to determine the influence nickel morphology and porosity distribution have on the processing and properties of tape cast Ni/YSZ composites. Specifically, the sintering characteristics, electrical conductivity, and thermal expansion behaviour of tape cast composites created from YSZ, nickel, nickel oxide (NiO), nickel coated graphite (NiGr), and/or graphite (Gr) powders are investigated. In addition to samples made from 100% YSZ, 100% Ni, and 100% NiO powders, five composite types were created for this investigation: NiO/YSZ, NiO&Gr/YSZ, Ni/YSZ, NiGr/YSZ, and Ni&Gr/YSZ each with nickel loadings varying between 4 vol% Ni of total solids and 77 vol% Ni of total solids. Another set of composites with a fixed nickel loading of 27 vol% Ni and 47 vol% Ni of total solids and varying graphite loadings were also created. <br /> During the burnout stage, the composites made from nickel oxide powder shrink slightly while the composites made from nickel metal expand due to nickel oxidation. Graphite additions below 20 vol% of the green volume do not alter the dimensional changes of the composites during burnout, but graphite loadings greater than 25 vol% of the green volume cause significant expansion in the thickness of the composites. <br /> After sintering, the amount of volumetric sintering shrinkage decreases with higher nickel loadings and is greater for the composites made with nickel oxide compared to the composites made from nickel metal. The porosity generated in the composites containing graphite is slightly higher than the volume of graphite added to the composite and is much greater than the porosity contained in the graphite-free composites. <br /> Dimensional changes of the porous Ni/YSZ and NiO/YSZ composites during both burnout and sintering were analysed based on concepts of constrained sintering of composite powder mixtures. In some cases constrained sintering was evident, while in others, a more simple rule of mixtures behaviour for shrinkage as a function of YSZ content was observed. <br /> When nickel oxide is reduced to nickel metal during the reduction stage there is essentially no change in the composite volume for the composites containing YSZ because the YSZ prevents the composites from shrinking. After reduction the additional porosity generated in the composites is equivalent to the change in volume due to the reduction of nickel oxide to nickel metal. <br /> When measuring the electrical conductivity, each composite type demonstrated classic percolation behaviour. The NiGr/YSZ composites had the lowest percolation threshold, followed by the Ni/YSZ and NiO/YSZ composites. When graphite was added with a nickel coating, the added porosity did not disrupt the nickel percolation network and allowed the nickel to occupy a larger effective volume compared to a composite made with similar sized solid nickel particles. When graphite was added to the composites, the electrical conductivity was reduced and the percolation threshold increased. <br /> Generally, the coefficient of thermal expansion (CTE) for Ni/YSZ composites are expected to follow the rule of mixtures prediction since the elastic properties for nickel and YSZ are similar. However when porosity is distributed unevenly between the YSZ and nickel phases, the CTE prediction will deviate from the rule of mixtures. When cornstarch was added to the NiGr/YSZ composites, the CTE increased as the amount of porosity in the YSZ phase increased. The CTE of the NiGr/YSZ composites followed the rule of mixtures indicating that the porosity was evenly distributed between the nickel and YSZ phases. For the other composite types, the measured CTE was higher than the rule of mixtures prediction suggesting that more porosity was contained within the YSZ phase.
6

The Processing and Characterization of Porous Ni/YSZ and NiO/YSZ Composites used in Solid Oxide Fuel Cell Applications

Clemmer, Ryan January 2006 (has links)
A solid oxide fuel cell (SOFC) is an energy conversion device that has the potential to efficiently generate electricity in an environmentally-friendly manner. In general, a SOFC operates between 750&deg;C and 1000&deg;C utilizing hydrogen or hydrocarbons as fuel and air as an oxidant. The three major components comprising a fuel cell are the electrolyte, the cathode, and the anode. At present, the state-of-the-art SOFC is made from a dense yttria-stabilized zirconia (YSZ) electrolyte, a porous lanthanum manganite cathode, and a porous nickel/YSZ composite anode. With the advent of the anode-supported SOFC and the increased interest in using a wider range of fuels, such as those containing sulphur, knowledge of the anode properties is becoming more important. <br /> The properties of the current anodes are limited due to the narrow range of nickel loadings imposed by the minimum nickel content for electrical conductivity and the maximum allowable nickel loading to avoid thermal mismatch with the YSZ electrolyte. In addition, there is little research presented in the literature regarding the use of nickel metal as a starting anode material, rather than the traditional nickel oxide powder, and how porosity may affect the anode properties. <br /> The purpose of this investigation is to determine the influence nickel morphology and porosity distribution have on the processing and properties of tape cast Ni/YSZ composites. Specifically, the sintering characteristics, electrical conductivity, and thermal expansion behaviour of tape cast composites created from YSZ, nickel, nickel oxide (NiO), nickel coated graphite (NiGr), and/or graphite (Gr) powders are investigated. In addition to samples made from 100% YSZ, 100% Ni, and 100% NiO powders, five composite types were created for this investigation: NiO/YSZ, NiO&Gr/YSZ, Ni/YSZ, NiGr/YSZ, and Ni&Gr/YSZ each with nickel loadings varying between 4 vol% Ni of total solids and 77 vol% Ni of total solids. Another set of composites with a fixed nickel loading of 27 vol% Ni and 47 vol% Ni of total solids and varying graphite loadings were also created. <br /> During the burnout stage, the composites made from nickel oxide powder shrink slightly while the composites made from nickel metal expand due to nickel oxidation. Graphite additions below 20 vol% of the green volume do not alter the dimensional changes of the composites during burnout, but graphite loadings greater than 25 vol% of the green volume cause significant expansion in the thickness of the composites. <br /> After sintering, the amount of volumetric sintering shrinkage decreases with higher nickel loadings and is greater for the composites made with nickel oxide compared to the composites made from nickel metal. The porosity generated in the composites containing graphite is slightly higher than the volume of graphite added to the composite and is much greater than the porosity contained in the graphite-free composites. <br /> Dimensional changes of the porous Ni/YSZ and NiO/YSZ composites during both burnout and sintering were analysed based on concepts of constrained sintering of composite powder mixtures. In some cases constrained sintering was evident, while in others, a more simple rule of mixtures behaviour for shrinkage as a function of YSZ content was observed. <br /> When nickel oxide is reduced to nickel metal during the reduction stage there is essentially no change in the composite volume for the composites containing YSZ because the YSZ prevents the composites from shrinking. After reduction the additional porosity generated in the composites is equivalent to the change in volume due to the reduction of nickel oxide to nickel metal. <br /> When measuring the electrical conductivity, each composite type demonstrated classic percolation behaviour. The NiGr/YSZ composites had the lowest percolation threshold, followed by the Ni/YSZ and NiO/YSZ composites. When graphite was added with a nickel coating, the added porosity did not disrupt the nickel percolation network and allowed the nickel to occupy a larger effective volume compared to a composite made with similar sized solid nickel particles. When graphite was added to the composites, the electrical conductivity was reduced and the percolation threshold increased. <br /> Generally, the coefficient of thermal expansion (CTE) for Ni/YSZ composites are expected to follow the rule of mixtures prediction since the elastic properties for nickel and YSZ are similar. However when porosity is distributed unevenly between the YSZ and nickel phases, the CTE prediction will deviate from the rule of mixtures. When cornstarch was added to the NiGr/YSZ composites, the CTE increased as the amount of porosity in the YSZ phase increased. The CTE of the NiGr/YSZ composites followed the rule of mixtures indicating that the porosity was evenly distributed between the nickel and YSZ phases. For the other composite types, the measured CTE was higher than the rule of mixtures prediction suggesting that more porosity was contained within the YSZ phase.
7

Hydrogen and Carbon Monoixde Electrochemical Oxidation Reaction Kinetics on Solid Oxide Fuel Cell Anodes

Yao, Weifang January 2013 (has links)
Solid oxide fuel cells (SOFCs) are promising power generation devices due to its high efficiency and low pollutant emissions. SOFCs operate with a wide range of fuels from hydrogen (H2) to hydrocarbons, and are mainly intended for stationary power generation. Compared to combustion systems, SOFCs have significantly lower environmental impacts. However, the full scale commercialization of SOFCs is impeded by high cost and problems associated with long-term performance and durability. The cell performance can be affected by various internal losses, involving cathode, anode and electrolyte. Anodic losses make a significant contribution to the overall losses, practically in anode-supported cells. Therefore, it is desirable to reduce the anodic losses in order to enhance the overall cell performance. Knowledge of the actual elementary reaction steps and kinetics of electrochemical reactions taking place on the anode is critical for further improvement of the anode performance. Since H2 and carbon monoxide (CO) are the primary reforming products when hydrocarbons are used as SOFC fuels, investigation of electrochemical reactions involving H2 and CO should provide a better understanding of SOFC electrochemical behavior with hydrocarbon feeds. However, still exist uncertainties concerning both H2 and CO electrochemical reactions. The overall objective of this research is to investigate the mechanistic details of H2 and CO electrochemical reactions on SOFC anodes. To achieve this objective, Ni/YSZ pattern anodes were used in the experimental study and as model anodes for the simulation work due to their simplified 2-D structure. The Ni/YSZ pattern anodes were fabricated using a bi-layer resist lift-off method. Imaging resist nLOF2035 and sacrificial resist PGMI SF11 were found to be effective in the bi-layer photolithographic process. Suitable undercut size was found critical for successful pattern fabrication. A simple method, involving taking microscopic photographs of photoresist pattern was developed, to check if the undercut size is large enough for the lift-off; semi-circle wrinkles observable in photographs indicate whether the undercut is big enough for successful pattern anode fabrication. The final product prepared by this method showed straight and clear Ni patterns. A systematic study was performed to determine the stable conditions for Ni/YSZ pattern anode performance. The microstructure and electrochemical behavior changes of the pattern anode were evaluated as a function of Ni thickness, temperature and H2O content in H2 environment. Ni/YSZ pattern anodes with 0.5 µm thick Ni were tested in dry H2 at 550°C without significantly changing the TPB line. Ni/YSZ pattern anodes with Ni thickness of 0.8 µm were tested at 550°C under dry and humidified H2 (3-70% H2O) conditions without TPB line change. For 0.8 µm thick patterns, the TPB length showed pronounced changes in the presence of H2 with 3-70% H2O at 700°C. Significant increase in TPB length due to hole formation was observed at 800°C with 3% and 10% H2O. Ni/YSZ pattern anodes with 1.0 µm thick Ni were stable in H2 with 3% H2O in the range 500-800°C, with only slight changes in the TPB line. Changes of TPB line and Ni microstructure were observed in the presence of 3-70% H2O above 700C. Stabilization of the pattern anode performance depends on temperature. To accelerate stabilization of the cell, pre-treatment of the cell in H2 with 3% H2O for ~22 hrs at 750°C or 800°C could be performed. In addition, comprehensive data sets for H2 and CO electrochemical oxidation reactions on Ni/YSZ pattern anodes were obtained under stable test conditions. For the H2/H2O system, the polarization resistance (Rp) increases as temperature, overpotential, H2 partial pressure, TPB length decreases. Rp is also dependent on H2O content. When the H2O content is between 3% and 30-40%, Rp decreased with increasing H2O content. However, Rp is less affected with further increases in H2O content. For the CO/CO2 system, polarization resistance depends on partial pressure of CO and CO2, temperature and overpotential. Moreover, the polarization resistance decreases when the partial pressure of CO2 and temperature increase. The partial pressure of CO has a positive effect on the polarization resistance. The polarization resistance decreases to a minimum when the overpotential is 0.1 V. For both H2 and CO electrochemical oxidations, charge transfer reactions contribute to the rate limiting steps. A 1-D dynamic SOFC half-cell model considering multiple elementary reaction kinetics was developed. The model describes elementary chemical reactions, electrochemical reactions and surface diffusion on Ni/YSZ pattern anodes. A new charge transfer reactions mechanism proposed by Shishkin and Ziegler (2010) based on Density Functional Theory (DFT) was investigated through kinetic modeling and pattern anode experimental validation. This new mechanism considers hydrogen oxidation at the interface of Ni and YSZ. It involves a hydrogen atom reacting with the oxygen ions bound to both Ni and YSZ to produce hydroxyl (charge transfer reaction 1), which then reacts with the other hydrogen atom to form water (charge transfer reaction 2). The predictive capability of this reaction mechanism to represent our experimental results was evaluated. The simulated Tafel plots were compared with our experimental data for a wide range of H2 and H2O partial pressures and at different temperatures. Good agreements between simulations and experimental results were obtained. Charge transfer reaction 1 was found to be rate-determining under cathodic polarization. Under anodic polarization, a change in rate-limiting process from charge transfer reaction 1 to charge transfer reaction 2 was found when increasing the H2O partial pressure. Surface diffusion was not found to affect the H2 electrochemical performance.
8

Reforming Characteristics of Methane-Ammonia Mixed Fuel on Ni-YSZ Catalyst:Fundamental Study toward Application to SOFC / Ni-YSZ 触媒におけるメタンーアンモニア混合燃料の改質:SOFC への応用に向けた基礎研究

Teramoto, Katsuyuki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22439号 / 工博第4700号 / 新制||工||1734(附属図書館) / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 岩井 裕, 教授 黒瀬 良一, 准教授 松本 充弘, 教授 吉田 英生 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
9

Methane and Solid Carbon Based Solid Oxide Fuel Cells

Chien, Chang-Yin 07 April 2011 (has links)
No description available.
10

Investigation of catalytic phenomena for solid oxide fuel cells and tar removal in biomass gasifiers

Kuhn, John 27 August 2007 (has links)
No description available.

Page generated in 0.0335 seconds