1 |
Synthèse, caractérisation et réponse photocatalytique des oxydes semi-conducteurs à base de NiTiO3 / Synthesis, characterization and photocatalytic response of NiTiO3-based semiconducting oxidesRuiz Preciado, Marco Alejandro 17 October 2016 (has links)
Structures semi-conductrices à base de NiTiO3, et l'étude de leurs propriétés dans le but de les appliquer en photocatalyse. Une étude théorique et des simulations numériques ont été effectuées pour analyser les propriétés électroniques, vibrationnelles et optiques de NiTiO3 massif ou sous forme de clusters nanométriques. Les poudres NiTiO3 ont été synthétisées par sol-gel par réaction en phase solide, tandis que les films minces ont été obtenus par pulvérisation cathodique rf-magnétron. Les caractérisations de leurs propriétés physiques confirment l'obtention de NiTiO3 polycristallin dans sa phase ilménite. La détermination du gap électronique à 2,25 eV suggère la faisabilité de mise en oeuvre des matériaux synthétisés comme photocatalyseurs actifs sous irradiation en lumière visible. Cette fonctionnalité a été testée par la dégradation du bleu de méthylène en solution aqueuse en utilisant les couches minces de NiTiO3 sous irradiation visible, atteignant la dégradation de 60% de la concentration initiale du colorant en 300 minutes. En outre, l'électro-oxydation du méthanol a été réalisée en appliquant une tension externe sur une électrode contenant des poudres NiTiO3 dans des milieux alcalins. Les ions de Ni présents dans le catalyseur ont été identifiés comme des espèces actives et que l'oxydation des molécules organiques se produit sur la surface des sites de Ni3+. En résumé, NiTiO3 a été synthétisé sous forme de poudres et de films minces ayant des caractéristiques appropriées pour la photocatalyse hétérogène efficace et les capacités catalytiques de NiTiO3 ont été démontrées sur la photodégradation du bleu de méthylène et l'électrooxydation de méthanol. / The thesis work is devoted to the synthesis of NiTiO3-based semiconductive structures, i.e. powders and thin films, and the investigation of their related properties with the aim of their applications in photocatalysis. Theoretical approach and numerical simulations of the electronic, vibrational and optical properties of bulk and nanosized NiTiO3 structures have been carried out in order to deepen the understanding of the experimental results. The synthesis of NiTiO3 powders has been achieved by sol-gel and solid state reaction, while NiTiO3 thin films have been grown by rf-sputtering.Characterizations on their structural, vibrational and optical properties confirm the stabilization of polycrystalline NiTiO3 in its ilmenite phase in both powders and thin films as well. The determination of a band gap at 2.25 eV suggests the feasibility to implement the synthesized materials as visible-light-active photocatalysts. This feature has been tested in thedegradation of methylene blue in aqueous solution using rf-sputtered NiTiO3 thin films irradiated with visible light,achieving the degradation of 60% of the initial concentration of the colorant in 300 minutes. In addition, the electro-oxidation of methanol has been accomplished by applying an external voltage on an electrode containing NiTiO3 powders in alkaline media. The Ni ions present in the catalyst have been identified as the active species with the oxidation of the organic molecules on the surface of Ni3+ sites. As a main achievement, NiTiO3 has been synthesized as powders and thin films with suitable characteristics for efficient heterogeneous photocatalysis and the catalytic capabilities of NiTiO3 have beendemonstrated on the photodegradation of Methylene Blue and the electro-oxidation of methanol.
|
2 |
Electrocatalysis using Ceramic Nitride and Oxide NanostructuresAnju, V G January 2016 (has links) (PDF)
Global warming and depletion in fossil fuels have forced the society to search for alternate, clean sustainable energy sources. An obvious solution to the aforesaid problem lies in electrochemical energy storage systems like fuel cells and batteries. The desirable properties attributed to these devices like quick response, long life cycle, high round trip efficiency, clean source, low maintenance etc. have made them very attractive as energy storage devices. Compared to many advanced battery chemistries like nickel-metal hydride and lithium - ion batteries, metal-air batteries show several advantages like high energy density, ease of operation etc. The notable characteristics of metal - air batteries are the open structure with oxygen gas accessed from ambient air in the cathode compartment. These batteries rely on oxygen reduction and oxygen evolution reactions during discharging and charging processes. The efficiency of these systems is determined by the kinetics of oxygen reduction reaction. Platinum is the most preferred catalyst for many electrochemical reactions. However, high cost and stability issues restrict the use of Pt and hence there is quest for the development of stable, durable and active electrocatalysts for various redox reactions.
The present thesis is directed towards exploring the electrocatalytic aspects of titanium carbonitride. TiCN, a fascinating material, possesses many favorable properties such as extreme hardness, high melting point, good thermal and electrical conductivity. Its metal-like conductivity and extreme corrosion resistance prompted us to use this material for various electrochemical studies. The work function as well as the bonding in the material can be tuned by varying the composition of carbon and nitrogen in the crystal lattice.
The current study explores the versatility of TiCN as electrocatalyst in aqueous and non-aqueous media. One dimensional TiC0.7N0.3 nanowires are prepared by simple one step solvothermal method without use of any template and are characterized using various physicochemical techniques. The 1D nanostructures are of several µm size length
and 40 ± 15 nm diameter (figure 1). Orientation followed by attachment of the primary particles results in the growth along a particular plane (figure 2).
(a) (b)
(c)
Figure 1. (a) SEM images of TiC0.7N0.3 nanowires (b) TEM image and (c) High resolution TEM image showing the lattice fringes.
(a) (b) (d)
Figure 2. Bright field TEM images obtained at different time scales of reaction. (a) 0 h; (b) 12 h; (c) 72 h and (d) 144 h.
The next aspect of the thesis discusses the electrochemical performance of TiC0.7N0.3 especially for oxygen reduction. Electrochemical oxygen reduction reaction (ORR) reveals that the nanowires possess high activity for ORR and involves four electron process leading to water as the product. The catalyst effectively converts oxygen to water with an efficiency of 85%. A comparison of the activity of different (C/N) compositions of TiCN is shown in figure 3. The composition TiC0.7N0.3 shows the maximum activity for the reaction. The catalyst is also very selective for ORR in presence of methanol and thus cross-over issue in fuel cells can be effectively addressed. Density functional theory (DFT) calculations also lead to the same composition as the best for electrocatalysis, supporting the experimental observations.
Figure 3. Linear sweep voltammetric curves observed for different compositions of titanium carbonitride towards ORR.
The next chapter deals with the use of TiC0.7N0.3 as air cathode for aqueous metal
- air batteries. The batteries show remarkable performance in the gel- and in liquid- based electrolytes for zinc - air and magnesium - air batteries. A partial potassium salt of polyacrylic acid (PAAK) is used as the polymer to form a gel electrolyte. The cell is found to perform very well even at very high current densities in the gel electrolyte (figures 4 and 5).
Figure 4 Photographs of different components of the gel - based zinc - air battery.
(a) (b)
Figure 5. a) Discharge curves at different current densities of 5, 20, 50 and 100 mA/cm2 for zinc-air system with TiC0.7N0.3 cathode b) Charge – discharge cycles at 50 mA/cm2 for the three electrode configuration with TiC0.7N0.3 nanowire for ORR and IrO2 for OER and Zn electrode (2h. cycle period).
Similarly, the catalytic activity of TiC0.7N0.3 has also been explored in non-aqueous electrolyte. The material acts as a bifunctional catalyst for oxygen in non-
aqueous medium as well. It shows a stable performance for more than 100 cycles with
high reversibility for ORR and OER (figure 6). Li-O2 battery fabricated with a non-aqueous gel- based electrolyte yields very good output. (a) (b) (c)
Figure 6. Galvanostatic charge –discharge cycles. (a) at 1 mA/cm2 (b) specific capacity as a function of no. of cycles (c) photographs of PAN-based gel polymer electrolyte.
Another reaction of interest in non –aqueous medium is I-/I3-. redox couple. TiC0.7N0.3 nanowires show small peak to peak separation, low charge transfer resistance and hence high activity. The catalyst is used as a counter electrode in dye sensitized a
solar cell that shows efficiencies similar to that of Pt, state of the art catalyst (figure 7). (a) (b)
(c)
Figure 7 (a) Cyclic voltammograms for I-/I3 - redox species on TiC0.7N0.3 nanowires (red), TiC0.7N0.3 particle (black) and Pt (blue). (b) Photocurrent density - voltage characteristics for DSSCs with different counter electrodes. TiC0.7N0.3 nanowire (black), TiC0.7N0.3 particle (blue), Pt (red). (c) Photograph of a sample cell.
(a) (b)
(c) (d)
Figure 8 a) Comparison ORR activity for (i) NiTiO3(black), (ii) N-rGO (red), (iii) NiTiO3 – N-rGO (green) and (iv) Pt/C (blue) (b) Linear sweep voltammograms for OER observed on NiTiO3 – N-rGO composite (black), NiTiO3 (brown), N-rGO (blue), glassy carbon (red) in 0.5 M KOH. (c) Galvanostatic discharge curves of NiTiO3 – N-rGO as air electrode
(d) Charge – discharge cycle at 5 mA/cm2 for the rechargeable battery with 10 min. cycle period.
The last part of the thesis discusses about a ceramic oxide, nickel titanate. The electrocatalytic studies of the material towards ORR and OER reveal that the catalyst shows remarkable performance as a bifunctional electrode. A gel - based zinc - air battery fabricated with nickel titanate – reduced graphene oxide composite shows exceptional performance of 1000 charge-discharge cycles in the rechargeable mode (figure 8). Of course, the primary battery configuration works very well too
The thesis contains seven chapters on the aspects mentioned above with summary and future perspectives given as the last chapter. An appendix based on TiN nanotubes and supercapacitor studies is given at the end.
|
Page generated in 0.023 seconds