• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

OPTIMISATION DE REQUETES DANS UN SYSTEME DE RECHERCHE D'INFORMATION<br />APPROCHE BASEE SUR L'EXPLOITATION DE TECHNIQUES AVANCEES DE L'ALGORITHMIQUE GENETIQUE

Tamine, Lynda 21 December 2000 (has links) (PDF)
Les travaux présentés dans cette thèse traitent des apports de l'algorithmique génétique à la conception de systèmes de recherche d'information adaptatifs aux besoins des utilisateurs.<br>Notre étude se focalise en premier lieu, sur l'analyse des différents modèles et stratégies de représentation et de recherche d'information. Nous mettons notamment en évidence, leur contribution à la résolution des problèmes inhérents à la recherche d'information. <br>En second lieu, notre intérêt s'est porté sur l'étude des algorithmes génétiques. Nous basant alors sur leur robustesse, théoriquement et expérimentalement prouvée, nous intégrons ces algorithmes à la mise en oeuvre de notre approche d'optimisation de requête.<br>Nous présentons une approche de recherche d'information qui intègre une stratégie de reformulation de requête par injection de pertinence, fondée sur l'hybridation d'un processus d'optimisation génétique, à un modèle de recherche de base. Nous proposons un algorithme spécifique à la recherche d'information, par l'intégration d'opérateurs génétiques augmentés par la connaissance du domaine d'une part, et d'une heuristique permettant de résoudre le problème de multimodalité de la pertinence d'autre part. L'heuristique de nichage en l'occurrence, est diffusée globalement lors de l'évolution de l'AG. La population est alors organisée en niches de requêtes effectuant une recherche parallèle et coopérative d'informations.<br>Nous évaluons enfin notre approche de recherche d'information, au travers d'expérimentations réalisées à l'aide du système Mercure, sur la collection de référence TREC.
2

Amélioration de la prise de greffe hématopoïétique par une thérapie cellulaire à base de cellules souches mésenchymateuses

Fortin, Audrey 08 1900 (has links)
Le traitement du cancer à l’aide d’une exposition aux radiations ionisantes peut mener au développement de plusieurs effets secondaires importants, dont un retard de réparation et de régénération du tissu hématopoïétique. Les mécanismes responsables de ces effets demeurent encore inconnus, ce qui limite le développement de nouvelles approches thérapeutiques. À l’aide d’un modèle murin de prise de greffe, nos résultats démontrent que l’endommagement du microenvironnement par l’irradiation a un impact limitant sur le nichage hématopoïétique. Parce que le microenvironnement est composé principalement de cellules dérivées des cellules souches mésenchymateuses (CSM), nous avons évalué le potentiel des CSM à régénérer le tissu hématopoïétique par la reconstitution de la niche osseuse. Cette thérapie a mené à une augmentation remarquable du nichage hématopoïétique chez les souris irradiées. Les causes moléculaires impliquées dans le nichage hématopoïétiques sont encore inconnues, mais nous avons remarqué l’augmentation de la sécrétion de la cytokine « granulocyte-colony stimulating factor » (G-CSF) dans l’espace médullaire suite à l’irradiation. Le G-CSF est impliqué dans la mobilisation cellulaire et est fort possiblement nuisible à une prise de greffe. Nous avons évalué le potentiel d’une thérapie à base de CSM sécrétant le récepteur soluble du G-CSF afin de séquestrer le G-CSF transitoirement et les résultats obtenus démontrent que le blocage du G-CSF favorise le nichage hématopoïétique. Globalement, les données présentées dans ce mémoire démontrent que le microenvironnement osseux et le niveau de G-CSF dans la moelle sont importants dans le processus de nichage hématopoïétique et que la baisse du potentiel de régénération du tissu hématopoïétique suite à l’irradiation peut être renversée à l’aide d’une thérapie cellulaire de CSM génétiquement modifiées ou non. / Cancer treatment using ionizing radiation may lead to significant side effects, including delayed hematopoietic tissue repair and regeneration. The mechanisms mediating these defects remain unknown, thus limiting the development of new therapeutic approaches. Using a mouse engraftment model, our results show that microenvironment damage by irradiation limits hematopoietic homing. Since the microenvironment is mainly composed of mesenchymal stem cells (MSCs)-derived cells, we evaluated the potential of MSCs to improve hematopoietic tissue regeneration by bone marrow niche reconstitution. This therapy led to remarkable enhancement of hematopoietic homing in irradiated mice. The molecular causes involved in hematopoietic homing remain unknown, but we noticed an increased in “granulocyte-colony stimulating factor” (G-CSF) secretion within the medullary space after irradiation. G-CSF is involved in cellular mobilization and may possibly be harmful to engraftment. We evaluated the therapeutical potential of MSC genetically-engineered to secrete a soluble G-CSF decoy receptor that would transiently sequester G-CSF. Results obtained show that G-CSF blocking improved hematopoietic homing. Overall, the findings presented in this thesis indicate that bone marrow microenvironment and G-CSF levels are important in hematopoietic homing process, and that the decline in hematopoietic tissue regeneration potential following irradiation can be reversed by cellular therapy using MSC genetically modified or not.
3

Méthodes d'optimisation multimodales associées à la modélisation numérique en électromagnétisme

Sareni, Bruno 20 January 1999 (has links) (PDF)
L'essor de l'informatique et des techniques d'intelligence artificielle a conduit ces dernières années à un développement sans précédent des procédés d'optimisation automatique qui peuvent aujourd'hui prendre en compte des dizaines de paramètres de conception. En particulier, les méthodes évolutionnistes ont connu depuis le début des années soixante une croissance exponentielle et s'affirment peu à peu comme les techniques les plus robustes : d'une part, elles permettent de localiser l'optimum d'une fonction dans l'espace des paramètres sans avoir recours aux dérivées de la fonction par rapport à ces paramètres ; d'autre part elles ne se laissent pas piéger par un optimum local et réussissent le plus souvent à déterminer l'optimum global de la fonction considérée. Cependant, la traduction d'un problème d'optimisation réel avec tous ses aspects (performance "pure" mais aussi sensibilité, facilité de fabrication, prix de revient, ...) sous forme d'une fonction à optimiser n'est pas toujours une chose simple. Dès lors, le concepteur apprécie lorsqu'il étudie l'un des aspects d'être conduit à plusieurs possibilités (plus ou moins parfaites suivant cet aspect là) plutôt qu'à une solution unique. Les méthodes génétiques multimodales ou méthodes de nichage offrent des perspectives intéressantes en permettant la localisation de solutions optimales multiples, aussi bien locales que globales. Notre travail est centré sur la caractérisation de ces nouvelles techniques d'optimisation numériques. Chaque méthode a été testée de façon classique à partir de fonctions mathématiques ainsi que sur des problèmes d'électromagnétisme et sur un procédé très original de conception de formes optimales d'électrodes. Nous décrivons une nouvelle approche pour des systèmes 2D-plan ou axisymétriques, où la forme de l'électrode est identifiée à une ligne équipotentielle obtenue par optimisation du positionnement et de la valeur d'un certain nombre de charges fictives.
4

Amélioration de la prise de greffe hématopoïétique par une thérapie cellulaire à base de cellules souches mésenchymateuses

Fortin, Audrey 08 1900 (has links)
Le traitement du cancer à l’aide d’une exposition aux radiations ionisantes peut mener au développement de plusieurs effets secondaires importants, dont un retard de réparation et de régénération du tissu hématopoïétique. Les mécanismes responsables de ces effets demeurent encore inconnus, ce qui limite le développement de nouvelles approches thérapeutiques. À l’aide d’un modèle murin de prise de greffe, nos résultats démontrent que l’endommagement du microenvironnement par l’irradiation a un impact limitant sur le nichage hématopoïétique. Parce que le microenvironnement est composé principalement de cellules dérivées des cellules souches mésenchymateuses (CSM), nous avons évalué le potentiel des CSM à régénérer le tissu hématopoïétique par la reconstitution de la niche osseuse. Cette thérapie a mené à une augmentation remarquable du nichage hématopoïétique chez les souris irradiées. Les causes moléculaires impliquées dans le nichage hématopoïétiques sont encore inconnues, mais nous avons remarqué l’augmentation de la sécrétion de la cytokine « granulocyte-colony stimulating factor » (G-CSF) dans l’espace médullaire suite à l’irradiation. Le G-CSF est impliqué dans la mobilisation cellulaire et est fort possiblement nuisible à une prise de greffe. Nous avons évalué le potentiel d’une thérapie à base de CSM sécrétant le récepteur soluble du G-CSF afin de séquestrer le G-CSF transitoirement et les résultats obtenus démontrent que le blocage du G-CSF favorise le nichage hématopoïétique. Globalement, les données présentées dans ce mémoire démontrent que le microenvironnement osseux et le niveau de G-CSF dans la moelle sont importants dans le processus de nichage hématopoïétique et que la baisse du potentiel de régénération du tissu hématopoïétique suite à l’irradiation peut être renversée à l’aide d’une thérapie cellulaire de CSM génétiquement modifiées ou non. / Cancer treatment using ionizing radiation may lead to significant side effects, including delayed hematopoietic tissue repair and regeneration. The mechanisms mediating these defects remain unknown, thus limiting the development of new therapeutic approaches. Using a mouse engraftment model, our results show that microenvironment damage by irradiation limits hematopoietic homing. Since the microenvironment is mainly composed of mesenchymal stem cells (MSCs)-derived cells, we evaluated the potential of MSCs to improve hematopoietic tissue regeneration by bone marrow niche reconstitution. This therapy led to remarkable enhancement of hematopoietic homing in irradiated mice. The molecular causes involved in hematopoietic homing remain unknown, but we noticed an increased in “granulocyte-colony stimulating factor” (G-CSF) secretion within the medullary space after irradiation. G-CSF is involved in cellular mobilization and may possibly be harmful to engraftment. We evaluated the therapeutical potential of MSC genetically-engineered to secrete a soluble G-CSF decoy receptor that would transiently sequester G-CSF. Results obtained show that G-CSF blocking improved hematopoietic homing. Overall, the findings presented in this thesis indicate that bone marrow microenvironment and G-CSF levels are important in hematopoietic homing process, and that the decline in hematopoietic tissue regeneration potential following irradiation can be reversed by cellular therapy using MSC genetically modified or not.

Page generated in 0.0564 seconds