Spelling suggestions: "subject:"nichtlineares eigenwertproblem"" "subject:"nichtlineares eigenwertprobleme""
1 |
Spectral and variational characterizations of solutions to semilinear eigenvalue problemsWeth, Tobias. January 2001 (has links) (PDF)
Mainz, University, Diss., 2001.
|
2 |
Iterative projection methods for symmetric nonlinear eigenvalue problems with applicationsBetcke, Marta January 2007 (has links)
Zugl.: Hamburg, Techn. Univ., Diss., 2007
|
3 |
Automated multilevel substructuring for nonlinear eigenvalue problemsElssel, Kolja January 2006 (has links)
Zugl.: Hamburg, Techn. Univ., Diss., 2006
|
4 |
Vibrations of plates with massesSolov'ëv, Sergey I. 31 August 2006 (has links) (PDF)
This paper presents the investigation of the
nonlinear eigenvalue problem describing free
vibrations of plates with elastically attached
masses. We study properties of eigenvalues and
eigenfunctions and prove the existence theorem.
Theoretical results are illustrated by numerical
experiments.
|
5 |
Multi-level substructuring methods for model order reductionBlömeling, Frank January 2008 (has links)
Zugl.: Hamburg, Techn. Univ., Diss., 2008
|
6 |
Eigenvibrations of a plate with elastically attached loadSolov'ëv, Sergey I. 11 April 2006 (has links) (PDF)
This paper is concerned with the investigation of the nonlinear eigenvalue problem describing the natural oscillations of a plate with a load that elastically attached to it. We study properties of eigenvalues and eigenfunctions of this eigenvalue problem and prove the existence theorem for eigensolutions. Theoretical results are illustrated by numerical experiments.
|
7 |
Preconditioned iterative methods for a class of nonlinear eigenvalue problemsSolov'ëv, Sergey I. 31 August 2006 (has links) (PDF)
In this paper we develop new preconditioned
iterative methods for solving monotone nonlinear
eigenvalue problems. We investigate the convergence
and derive grid-independent error estimates for
these methods. Numerical experiments demonstrate
the practical effectiveness of the proposed methods
for a model problem.
|
8 |
Preconditioned iterative methods for monotone nonlinear eigenvalue problemsSolov'ëv, Sergey I. 11 April 2006 (has links) (PDF)
This paper proposes new iterative methods for the efficient computation of the smallest eigenvalue of the symmetric nonlinear matrix eigenvalue problems of large order with a monotone dependence on the spectral parameter. Monotone nonlinear eigenvalue problems for differential equations have important applications in mechanics and physics. The discretization of these eigenvalue problems leads to ill-conditioned nonlinear eigenvalue problems with very large sparse matrices monotone depending on the spectral parameter. To compute the smallest eigenvalue of large matrix nonlinear eigenvalue problem, we suggest preconditioned iterative methods: preconditioned simple iteration method, preconditioned steepest descent method, and preconditioned conjugate gradient method. These methods use only matrix-vector multiplications, preconditioner-vector multiplications, linear operations with vectors and inner products of vectors. We investigate the convergence and derive grid-independent error estimates of these methods for computing eigenvalues. Numerical experiments demonstrate practical effectiveness of the proposed methods for a class of mechanical problems.
|
9 |
Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue problemsPester, Cornelia 01 September 2006 (has links) (PDF)
When the eigenvalues of a given eigenvalue problem are symmetric with respect to the real and the imaginary axes, we speak about a Hamiltonian eigenvalue symmetry or a Hamiltonian structure of the spectrum. This property can be exploited for an efficient computation of the eigenvalues. For some elliptic boundary value problems it is known that the derived eigenvalue problems have this Hamiltonian symmetry. Without having a specific application in mind, we trace the question, under which assumptions the spectrum of a given quadratic eigenvalue problem possesses the Hamiltonian structure.
|
10 |
Eigenvibrations of a plate with elastically attached loadSolov'ëv, Sergey I. 11 April 2006 (has links)
This paper is concerned with the investigation of the nonlinear eigenvalue problem describing the natural oscillations of a plate with a load that elastically attached to it. We study properties of eigenvalues and eigenfunctions of this eigenvalue problem and prove the existence theorem for eigensolutions. Theoretical results are illustrated by numerical experiments.
|
Page generated in 0.0656 seconds