• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1051
  • 406
  • 311
  • 115
  • 84
  • 55
  • 36
  • 29
  • 19
  • 16
  • 14
  • 14
  • 14
  • 14
  • 14
  • Tagged with
  • 2616
  • 412
  • 303
  • 255
  • 234
  • 220
  • 214
  • 201
  • 191
  • 179
  • 155
  • 142
  • 139
  • 135
  • 133
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Lithium-ion battery cathodes : structural and chemical stabilities of layered cobalt and nickel oxides /

Chebiam, Ramanan Venkata, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references (leaves 161-171). Available also in a digital version from Dissertation Abstracts.
462

The planar hall effect in thin foils of Ni-Fe alloy.

Yau, Kin-lun. January 1968 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1968. / Mimeographed.
463

The temperature dependence of the Planar Hall effect in nickel, cobalt and iron.

Yu, Ming-lun. January 1969 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1970. / Mimeographed.
464

The Heat Treatment of Nickel Titanium - An investigation Using Taguchi's Method of Optimisation

Gibson, Myles January 2015 (has links)
No description available.
465

Transition metal catalyzed regioselective carbon-carbon bond formation mediated by transfer hydrogenation

Sam, Brannon 03 September 2015 (has links)
One of the more formidable challenges in the synthesis of complex organic molecules remains the efficient formation of carbon-carbon bonds. The development of a broad class of reactions to achieve this goal involves the addition of carbon based nucleophiles to carbonyl and imine compounds. Until recently, classical approaches to carbon-carbon bond formation generally required the use of stoichiometric pre-formed organometallic reagents to serve as nucleophiles, which translate into stoichiometric organometallic byproducts. In an effort to minimize nucleophile pre-activation and byproduct formation, our lab has developed efficient methods for carbonyl and imine additions via in situ formation of alkyl metal nucleophiles from π-unsaturates. The research reported herein describes our advances in an assortment of transition metal-catalyzed carbon-carbon bond forming reactions mediated by transfer hydrogenation, including regioselective hydrohydroxymethylation, hydrohydroxyfluoroalkylation, and hydroaminomethylation. Additionally, the investigation of regioselective carbonyl vinylation is reported. / text
466

Cast turbine wheel failures

Menning, John Edward January 1980 (has links)
No description available.
467

The polymerization of butadiene by the syn- -crotylbis (triethylphosphite) nickel (II) hexafluorophosphate.

Navarre, Alexandre January 1972 (has links)
No description available.
468

Photocatalytic oxidation of NiEDTA

Salama, Philippe. January 2007 (has links)
Metal-Ethylenediaminetetraacetic acid (EDTA) complexes are found in a variety of industrial process. The stability of the formed complexes makes these compounds often inert to conventional wastewater treatment systems. In this work, the photocatalytic oxidation of NiEDTA was investigated as a means of breaking up the chelated nickel. The studied variables included the light intensity rate, the catalyst (TiO2), oxygen and NiEDTA concentrations. Photocatalytic experiments showed that increasing the catalyst concentration (0.5-3.0 g/L) decreases the light penetration inside the reactor resulting in a decrease in the reaction rate. The effect of oxygen and NiEDTA concentration was shown to exhibit Langmuir-Hinshelwood type kinetics. Total organic carbon (TOC) did not show any significant mineralization of NiEDTA for all investigated conditions. As a result, the by-products of the reaction were measured and found to include ED3A (ethylenediaminetriacetic acid), N-N'-EDDA (ethylenediamindiaacetic acid), IDA (iminodiacetic acid), oxalic acid, oxamic acid, glyoxylic acid, formaldehyde, ammonia, nitrate and nitrite. ED3A was found to be the major by-product of the reaction and nitrogen added from NiEDTA was found to be released as ammonia nitrogen. Oxygen consumption experiments were demonstrated as an effective way to monitor the rate of the reaction through measurement of the electron oxygen utilization rate. Nickel precipitation experiments showed that some of the by-products of NiEDTA degradation formed complexes with nickel. Finally, a light distribution model was generated using a CFD software (Fluent 6.1.22). For the catalyst concentration range of 0.5 to 3.0 g/L, this model showed that all of the light energy supplied by a centered UV lamp is absorbed within a one centimeter distance. Using the local volumetric rate of energy absorption (LVREA) calculated from the model the rate of the reaction was expressed in terms of quantum yield. For experiments carried out with air the quantum yield showed that the degradation rate was limited from an insufficient oxygen supply for electron scavenging. Increasing the oxygen concentration to 0.60 mmole O2/L increased the quantum yield for the highest light intensity rate; however the quantum yield never reached an optimum value thus indicating that other limiting conditions exist.
469

Rheology and electro-acoustic characterization of laterite slurries

Colebrook, Marjorie Helen 05 1900 (has links)
A systematic research study was carried out in order to characterize the rheology of concentrated slurries prepared from eight nickel laterites. The experiments were carried out using a rotational viscometer, and the behavior of the laterites was evaluated in terms of the apparent viscosity and yield stress obtained through flow curve modeling. An attempt was made to correlate the results obtained for the laterite samples with data obtained for model single mineral systems as well as for model mixed mineral systems. In combination with detailed mineralogical characterization of the laterite samples, all the rheological results allowed a rheology-based laterite classification system to be proposed. Accordingly, the laterite samples gave the following responses: the SAPSIL samples (high-quartz) generally producedl ow yield stress values, the SAPFE samples (high-iron) were characterized by intermediate to high yield stress values, while the SAP samples (saprolite) gave the highest yield stress values. Interestingly, these dominant rheological responses of laterites could actually be predicted based on rheological tests carried out on model mineral suspensions (particularly goethite and quartz). Since the rheology of fine mineral suspensions is largely determined by the surface properties (surface charge) of the particles, a series of electro-acoustic measurements were also performed on model minerals and laterite samples to analyze the surface charge characteristics of the tested samples. It was demonstrated that the current electro-acoustic theory developed for single mineral systems can readily be used for modeling the behavior of mixed mineral systems. The modeling and experimental data agreed exceptionally well when constituent minerals were of the same surface charge under given pH. Clear but rather small deviations between experiment and theory were observed under conditions when the minerals were oppositely charged. This observation strongly suggested that inter-particle aggregation was most likely responsible for the observed discrepancies. Overall, the results of this thesis show that laterite slurries exhibit a wide range of rheological responses due to highly variable mineralogy, differences in particle size distributions, and difference in the surface properties of the many constituent minerals. It also shows that the surface properties of the minerals relates to rheology.
470

X-ray Absorption Spectroscopy of Ultrathin Nickel Silicide Films: A Theoretical and Experimental Investigation

Arthur, Zachary 16 April 2013 (has links)
Previous studies have attempted to probe the structure of ultra-thin Nickel silicide films as they evolve in the manufacturing process with limited success. These studies have used ultra-thin Nickel silicide films that were quenched during the manufacturer's annealing process at select temperatures. This study aims to determine the structure of quenched ultra-thin Ni-Si films using Grazing Incidence X-Ray Absorption Near Edge Spectroscopy (GI-XANES) and ab-initio calculations (FDMNES). Successful calculations were prepared for the δ and θ Ni2Si phases, as well as the Ni3Si2, NiSi and NiSi2 phases. The GI-XANES experimental data was taken at the Canadian Light Source, at the Hard X-Ray Microanalysis Beamline (HXMA). XANES and FDMNES are used to identify two phases of the ultra-thin films: the as-deposited phase as a low-ordered Ni3Si2 phase, and the epitaxial NiSi2 phase was found in samples annealed past 400˚C.

Page generated in 0.0234 seconds