• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 1
  • Tagged with
  • 23
  • 23
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Extraction Of Nickel From Lateritic Ores

Buyukakinci, Ergin 01 January 2008 (has links) (PDF)
The aim of this study was to extract nickel and cobalt from the lateritic nickel ores of G&ouml / rdes region by hydrometallurgical methods under the optimum conditions. Limonitic and nontronitic types of G&ouml / rdes lateritic nickel ores were used during experiments. Agitative and column leaching experiments at atmospheric pressure were conducted with various parameters / these were duration, temperature and initial sulfuric acid concentration of leach solution. It was shown that in agitative leaching, under the optimum conditions that were determined as 24 hours of leaching at 95&deg / C with initial sulfuric acid concentration of 192.1 g/L for nontronite and 240.1 g/L for limonite, nickel and cobalt extractions were 96.0% and 63.4% for nontronite / 93.1% and 75.0% for limonite, respectively. Overall acid consumptions of ores were calculated as 669 kg H2SO4/ton dry ore for nontronitic type nickel ore and 714 kg H2SO4/ton dry ore for limonitic type nickel ore. Column leaching experiments also showed that nickel and cobalt could be extracted from both ore types by heap leaching. Nontronite type of laterite was found to be more suitable for column leaching by sulfuric acid. In column leaching, the calculated nickel and cobalt extractions were 83.9% and 55.2% for nontronite after 122 days of leaching with 100 g/L sulfuric acid concentration. Acid consumption of nontronite was found to be 462 kg H2SO4/ton dry ore.
12

Hydrometallurgical Processing Of Lateritic Nickel Ores

Kose, Caner Hakki 01 August 2010 (has links) (PDF)
The objective of this thesis study is to recover nickel and cobalt at maximum efficiency from column leach liquor of lateritic nickel ores existing in G&ouml / rdes region of Manisa by performing various hydrometallurgical methods under the optimum conditions. This column leach solution of nontronite type lateritic nickel ore was initially neutralized and purified from its basic impurities by a two stage iron removal process under the optimum conditions determined experimentally. Then, nickel and cobalt were precipitated in the form of mixed hydroxide precipitate from the purified leach solution by a two stage precipitation method called &ldquo / MHP&rdquo / and a manganese removal process was carried out also under the optimum conditions determined. By decreasing Mn concentration with this process to an acceptable level yielding at most 10% Mn in hydroxide precipitate, it was possible to produce a qualified MHP product suitable to the current marketing and standard conditions. As a result of this thesis study, the experiments conducted showed that by recycle leaching with sulfuric acid about 81% of Ni and 63% of Co in the lateritic nickel ore (9.72 kg Ni / ton of ore and 0.28 kg Co / ton of ore) could be extracted as mixed hydroxide precipitate by MHP method. The MHP product contains 41.9% Ni, 1.0% Co, 2.3% Mn, 0.06% Al, 1.5% Mg, 0.02% Fe, 0.01% Cr, 0.25% Zn, 0.03% Cu and 4.73% S.
13

High Pressure Acid Leaching Of Turkish Laterites

Kaya, Serif 01 January 2011 (has links) (PDF)
ABSTRACT HIGH PRESSURE ACID LEACHING OF TURKISH LATERITES Kaya, Serif M.Sc., Department of Metallurgical and Materials Engineering Supervisor: Prof. Dr. Yavuz A. Topkaya January 2011, 91 pages The aim of this thesis study was to investigate and find the most cost effective way of extracting nickel and cobalt into the pregnant leach solution (PLS) from G&ouml / rdes lateritic nickel and cobalt ore by means of sulphuric acid leaching under high temperature and high pressure conditions.The high pressure acid leach (HPAL) experiments were conducted with nontronitic and limonitic types of G&ouml / rdes lateritic nickel ore, respectively. Leaching experiments of nontronite ore have shown that almost all of the nickel and cobalt contained in the nontronitic ore were easily extracted into the (PLS). Therefore, the rest of the experiments were concentrated on difficult to leach limonitic sample when compared with the nontronitic one, and higher nickel and cobalt extractions were aimed to be obtained. By taking economic and technical considerations into account, the basic (HPAL) process parameters for the limonitic sample were optimized as / leaching at 255 &deg / C with a particle size of 100% -850 &mu / with 0.30 sulphuric acid to ore weight ratio in 1 hour of leaching duration. The experiments were conducted with 30% solids ratio and it was found that 87.3% of nickel and 88.8% of cobalt present in the limonitic ore could be extracted into the pregnant leach solution. Nevertheless, these results were found to be below the desired values. Therefore, the possible reasons of this behavior were investigated and the presence of hematite mineral in the limonitic ore was found to be the most probable one. Therefore, in order to dissolve the nickel and cobalt present in the hematite mineral, the additions of HCl, ferrous ions, cuprous ions and sulphur were tried, respectively and they were found to be beneficial in order to increase the degree of nickel and cobalt extractions.
14

Pressure Leaching Of Sivrihisar-yunus Emre Nickel Laterites

Secen, Berk 01 August 2011 (has links) (PDF)
The aim of this thesis study was to extract nickel and cobalt from Sivrihisar limonitic nickel laterite ore by high pressure acid leaching (HPAL) method under most economical operating parameters. Optimizing the conditions to yield a saleable quality mixed hydroxide product from the pregnant leach solution (PLS) was also investigated. To extract high amounts of nickel and cobalt from the laterite matrix / leaching duration, leaching temperature and sulfuric acid/ore ratio were studied at fixed conditions of -850 &micro / limonitic ore particle size and 40% solids concentration. The Sivrihisar limonitic nickel laterite ore was found to be readily leachable. It was found that 95.4% of Ni and 91.5% of Co were extracted at the optimized conditions of 235oC, 0.23 acid/ore ratio in 60 minutes. The real pregnant leach solution produced at the optimized conditions of HPAL was purified in two iron removal stages under the determined optimum conditions. Nearly all of the Al and Cr were removed from the PLS in the two stages of iron removal. Then, nickel and cobalt were taken out from the PLS in the form of mixed hydroxide precipitates (MHP) in two stages. A MHP 1 product containing 33.41 wt.% Ni, 2.93 wt.% Co was obtained with a Mn contamination of 3.69 wt.% at the optimized conditions of pH=7, 50oC and 60 minutes. The MHP 1 product was also contaminated with Fe (2.83 wt.%) since it could not be completely removed from the PLS without the critical losses of nickel and cobalt during the two iron removal stages.
15

Pressure Leaching Of Caldag Lateritic Nickel Ore

Onal, Mehmet Ali Recai 01 February 2013 (has links) (PDF)
The purpose of this study was to investigate the process optimization of combined high pressure acid leaching (HPAL) and mixed hydroxide precipitation (MHP) route for the extraction of nickel and cobalt from &Ccedil / aldag lateritic nickel ore. In order to extract nickel and cobalt values into pregnant leach solution (PLS), several process parameters of HPAL including acid load, temperature, leaching duration and particle size were investigated in comparative manner at constant solid concentration and agitation speed. After HPAL trials, it has been found that more than one combination of parameters offered higher than 90% extraction efficiencies for both nickel and cobalt. Among them, 0.325 kg/kg acid load, 250&deg / C, 1 hour duration and 100% -1 mm particle size was selected as the optimum conditions with 94.1% Ni and 94.0% Co extractions. A stock of PLS was prepared under the stated conditions that was treated by downstream operations in order to obtain MHP. Initially by two-stage iron removal of downstream operations major impurities iron, chromium and aluminum were nearly completely removed with acceptable nickel and cobalt losses from PLS. Then, the nickel and cobalt were precipitated by two-stage mixed hydroxide precipitation. In the first step of MHP, the optimum conditions were chosen as pH=7.10, 60&deg / C and 1 hour duration. The intermediate product obtained at these conditions contained 44.3% Ni, 3.01% Co with 3.06% Mn contamination. In summary, it was found that &Ccedil / aldag nickel laterite ore was readily leachable under HPAL conditions and PLS obtained was easily treatable in order to produce saleable MHP.
16

Relativistic theory of photoemission for magnetic materials

Woods, Matthew January 2000 (has links)
No description available.
17

Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction

Eychmüller, Alexander, Zhu, Chengzhou, Wen, Dan, Leubner, Susanne, Oschatz, Martin, Liu, Wei, Holzschuh, Matthias, Simon, Frank, Kaskel, Stefan 17 December 2015 (has links)
A class of novel nickel cobalt oxide hollow nanosponges were synthesized through a sodium borohydride reduction strategy. Due to their porous and hollow nanostructures, and synergetic effects between their components, the optimized nickel cobalt oxide nanosponges exhibited excellent catalytic activity towards oxygen evolution reaction.
18

Role Of Stacking Fault Energy On Texture Evolution In Micro- And Nano-Crystalline Nickel-Cobalt Alloys

Radhakrishnan, Madhavan 12 1900 (has links) (PDF)
Plastic deformation of metals and alloys are invariably accompanied by the development of texture. The origin of texture is attributed to the deformation micro-mechanisms associated with processing. The face-centered cubic (FCC) metals and alloys are known to exhibit two distinct types of textures when subjected to large strain rolling deformation, namely, (i) Cu-type texture, commonly seen in high/medium stacking fault energy (SFE) materials, (ii) Bs-type texture in low SFE materials. The circumstances that could result in the formation of Bs-type texture in low SFE materials still remains an open question and no definite mechanism has been uniquely agreed upon. Apart from the SFE, grain size could also influence the deformation mechanism and hence the deformation texture. It is well known that in materials with grain sizes less than 100 nm (referred to as nano-crystalline materials), the microstructures contain large fraction of grain boundaries. This subsequently introduces a variety of deformation mechanisms in the microstructure involving grain boundary-mediated processes such as grain boundary sliding and grain rotation, in addition to slip and twinning. A clear understanding of texture evolution in nano-crystalline materials, particularly at large strains, is a topic that remains largely unexplored. The present work is an attempt to address the aforementioned issues pertaining to the evolution of deformation texture, namely, (i) the effect of SFE and (ii) the effect of grain size, in FCC metals and alloys. Nickel-cobalt alloys are chosen as the model system for the present investigation. The addition of cobalt to nickel leads to a systematic reduction of SFE as a function of cobalt content. In this thesis, three alloys of Ni-Co system have been considered, namely, nickel – 20 wt.% cobalt, nickel – 40 wt.% cobalt and nickel – 60 wt.% cobalt. For a comparison, pure nickel has also been subjected to similar study. Chapter 1 of the thesis presents a detailed survey of literature pertaining to the evolution of rolling textures in FCC metals and alloys, and chapter 2 includes the details of the experimental techniques and characterization procedures, which are commonly employed for the entire work. Chapter 3 addresses the effect of stacking fault energy on the evolution of rolling texture. The materials subjected to study in this chapter are microcrystalline Ni-Co alloys. The texture evolution in Ni-20Co is very similar to pure Ni, and a characteristic Cu-type rolling texture is observed. The evolution of texture in these materials is primarily attributed to the intense dislocation activity throughout the deformation stages. In Ni-40Co, a medium SFE material, the rolling texture was predominantly Cu-type up to a strain of ε = 3 (95% thickness reduction). However, beyond this strain level, namely at ε = 4 (98%), the texture gets transformed to Bs-type with orientations maxima predominantly close to Goss ({110} <001>) position. Simultaneously, the Cu component which was dominant until 95% reduction has completely disappeared. The analysis of microstructures indicate that deformation is mostly accommodated by dislocation slip up to 95%, however, at ε > 3, Cu-type shear bands get initiated, preferably in the Cu-oriented ({112} <111>) grains. The sub-grains within the shear bands show preferred orientation towards Goss, which indicates that the Cu component should have undergone transformation and resulted in high fraction of Goss component. In Ni-60Co alloy, Bs-type texture forms in the early stages of deformation (ε ~ 0.5) itself and further deformation results in strengthening of the texture with an important difference that the maximum in orientation distribution has been observed at a location close to Goss component, rather than at exact Bs-location. The development of Bs-type texture is accompanied by the complete absence of Cu and S components. Extensive EBSD analyses show that the deformation twinning gets initiated beyond 10% reduction and was found extensively in most of the grains up to 50% reduction. At higher strains, tendency for twinning ceases and extensive shear banding is observed. A non-random distribution of orientations close to Goss orientation was found within the shear bands. The near-Goss component in the Ni-60Co alloy can be explained on the basis of deformation twinning and shear banding. Thus, a reasonable understanding of the deformation texture transition in the extreme SFE range has been developed. In chapter 4, the effect of fine grain size on the evolution of rolling texture has been addressed. Nanocrystalline (nc) nickel-cobalt alloys with a mean grain size of ~20 nm have been prepared by pulse electro-deposition method. For a comparison, nc Nickel (without cobalt) with similar grain size has also been deposited. For all the materials, a weakening of the initial fiber texture is observed in the early stage of room temperature rolling (ε ~ 0.22). A combination of equiaxed grain microstructure and texture weakening suggests grain boundary sliding as an operative mechanism in the early stage of rolling. At large strain (ε = 1.2), Ni-20Co develops a Cu-type texture with high fractions of S and Cu components, similar to pure Ni. The texture evolution in Ni-40Co and Ni-60Co alloys is more towards Bs-type. However, the texture maximum occurs at a location 10° away from the Goss. The evolution of Cu and S components in nc Ni-60Co alloy takes place simultaneously along with the α-fiber components during rolling. Microstructural investigation by TEM indicates deformation twinning to be more active in all the materials up to 40% reduction. However, no correlation could be drawn between the texture evolution and the density of twins. The deformation of nc Ni-20Co alloy, is also accompanied by significant grain growth at all the stages of rolling. The increase in grain size, subsequently, renders the texture to be of Cu-type. However, Ni-40Co and Ni-60Co alloys show high grain stability. The absence of strain heterogeneities such as shear bands, and the lack of significant fraction of deformation twins indicate that the observed Bs-type texture could be due to planar slip. The increase in deformation beyond 70% reduction caused a modest reduction in the intensity of deformation texture. The microstructural observation indicates the occurrence of restoration mechanisms such as recovery/ recrystallization at large strains. The overall findings of the investigation have been summarized in chapter 5. The deformation mechanism maps relating stacking fault energy with amount of strain and with grain size are proposed for micro- and nano- crystalline materials respectively.
19

Electrical characterization of transition metals in silicon:: a study on titanium, cobalt, and nickel and their interaction with hydrogen

Scheffler, Leopold 01 April 2015 (has links)
The understanding of the electrical properties of defects introducing deep levels in silicon is of prime technological importance in modern microelectronics. In this thesis, a comprehensive study of the transition metals titanium, cobalt, and nickel in silicon, and of their interaction with hydrogen is presented. The formed defects are detected and characterized by deep level transient spectroscopy (DLTS), Laplace DLTS, and minority carrier transient spectroscopy. A natural starting point for a study of metal-hydrogen reactions in silicon is the analysis of the effect of hydrogen on metal-free silicon. Complexes of hydrogen with carbon, which create deep levels in the band gap of silicon, are observed. Titanium introduces three levels into the band gap. The charge states determined in this thesis are in contradiction to the literature, questioning the assignment of these levels. Upon hydrogenation, TiH complexes with one, two, and three hydrogen atoms are identified. A proposition by theory that two different configurations of TiH with one hydrogen atom exist, can be supported. Cobalt is shown to have only one level in the band gap of silicon, whereas a second level previously attributed to cobalt is assigned to the cobalt-boron pair. Two CoH complexes are determined. Nickel has three levels in the band gap. Upon hydrogenation, complexes with up to three hydrogen atoms are identified. One of the defects can be observed in both n - and p -type silicon. For all three metals investigated, passive hydrogen complexes exist. They are created by further hydrogenation after the appearance of the above mentioned electrically active complexes. The thesis concludes with a comparison of the obtained results with those of neighboring elements to look for similarities and patterns. / Das Verständnis der elektrischen Eigenschaften von Defekten, welche tiefe Niveaus in der Bandlücke von Silizium erzeugen, ist von außerordentlichem Interesse für die moderne Mikroelektronik. In der vorliegenden Dissertation wird eine umfassende Untersuchung der Übergangsmetalle Titan, Kobalt und Nickel in Silizium und ihrer Wechselwirkung mit Wasserstoff vorgestellt. Die entstandenen Defekte werden mit Hilfe von Kapazitätstransientenspektroskopie (DLTS - deep level transient spectroscopy), Laplace DLTS und Minoritätsladungsträgertransientenspektroskopie (MCTS - minority carrier transient spectroscopy) beobachtet und charakterisiert. Für eine fehlerfreie Analyse der Metall-Wasserstoff-Reaktionen ist es sinnvoll, zuerst den Einfluss des Wasserstoffs auf metallfreies Silizium zu prüfen. Dabei wird die Bildung von Kohlenstoff-Wasserstoff-Komplexen, welche Niveaus in der Bandlücke von Silizium erzeugen, beobachtet. Titan besitzt drei Niveaus in der Bandlücke von Silizium. Die in dieser Arbeit bestimmten Ladungszustände stehen im Widerspruch zu den Literaturangaben, daher wird die Zuordnung dieser Niveaus in Frage gestellt. Die Reaktion von Titan mit Wasserstoff führt zu elektrisch aktiven Komplexen mit bis zu drei Wasserstoffatomen. Die Ergebnisse unterstützen einen Vorschlag aus der Theorie, nach dem der Komplex mit einem Wasserstoff zwei verschiedene Konfigurationen besitzen soll. Kobalt erzeugt ein Niveau in der Bandlücke. Ein weiteres Niveau, welches früher ebenfalls dem Kobalt zugewiesen wurde, kann dem Kobalt-Bor-Paar zugeordnet werden. Nach der Reaktion mit Wasserstoff können zwei CoH-Komplexe nachgewiesen werden. Nickel besitzt drei Niveaus in der Bandlücke und erzeugt elektrisch aktive NiH-Komplexe mit bis zu drei Wasserstoffatomen. Einer dieser Defekte kann sowohl im n - als auch im p -Typ Silizium beobachtet werden. Alle drei untersuchten Metalle besitzen elektrisch passive Komplexe, welche nach der weiteren Reaktion von Wasserstoff mit den aktiven Komplexen entstehen. Die Arbeit endet mit einem Vergleich der Ergebnisse mit denen benachbarter Elemente, um mögliche Ähnlichkeiten oder Muster zu erkennen.
20

Synthesis and characterisation of permethylpentalene complexes and permethylpentalene derivatives

Binding, Samantha Carys January 2015 (has links)
This thesis expands the scope for using the permethylpentalene ligand and its precursors in the synthesis of organometallic complexes. <strong>Chapter one</strong> begins with a brief review of linked metallocenes, with which multimetallic compounds bridged by pentalene ligands have often been compared, followed by a comprehensive review of the routes used to make pentalenes and substituted pentalenes. Organometallic compounds of pentalenes are introduced, with a focus on bimetallic systems. <strong>Chapter two</strong> explores the diversification of substituents added to the permethylpentalene (Pn*) precursor WeissH<sub>4</sub>, to include ethyl and isopropyl groups. Low-symmetry mono-, di-, tri- and tetraalkylated products are formed, eight such organic molecules have been identified by NMR spectroscopy, and two characterised crystallographically. It has been demonstrated that subsequent hydrolysis and decarboxylation of two of these products produces low-symmetry alkylpentalene precursors. The chapter concludes with discussions on the selectivity exhibited in these reactions, and the assignment of stereochemistry. <strong>Chapter three</strong> describes the synthesis of the first homoleptic double metallocene complex of iron. Fe<sub>2</sub>Pn*<sub>2</sub> has been characterised by X ray diffraction, and cyclic voltammetry studies demonstrate four accessible oxidation states (-1, 0, +1, +2). Magnetic measurements in the solid and solution state reveal an unusual triplet configuration, and DFT calculations indicate the origin of a high magnetic moment likely resides in unquenched orbital angular momentum contributions from SOMOs which have metal d character. Fe<sub>2</sub>Pn*<sub>2</sub> is EPR silent at 5, 40, and 300 K both in solution and the solid state, suggesting a large zero-field splitting parameter. The reaction of the di-iron complex with carbon monoxide, ethylene and H2 is reported; the bimetallic CO adduct, Fe<sub>2</sub>(&mu; &eta;<sup>5</sup>,&eta;<sup>3</sup> Pn*)(&mu; &eta;<sup>5</sup>,&eta;<sup>1</sup> Pn*)(CO)<sub>2</sub>, has been crystallographically characterised, and contains a highly distorted allylic bonding motif, which to the author’s knowledge is believed to be unique among iron complexes. <strong>Chapter four</strong> discusses the interaction of the bidentate Pn* ligand in anti bimetallic fused metallocenes. A new ligand exchange route has been developed to access the complexes (MCp)<sub>2</sub>Pn* (M = Co, Ni), and the isostructural complexes (MCp*)<sub>2</sub>Pn* have been made for M = Fe, Co, Ni by salt metathesis reactions. All five complexes have been characterised by single crystal X-ray crystallography, and have diamagnetic ground states in solution in common with their Pn bridged analogues. Variable temperature NMR studies reveal a spin-equilibrium between S = 0 and S = 1 in the dinickel complexes. DFT calculations reproduce the spin states found, and suggest the distortion towards &eta;<sup>3</sup> coordination observed on crossing from Fe, to Co, to Ni, results from population of orbitals with M―bridgehead antibonding character. The electronic structures show it is important to draw comparisons between isoelectronic linked metallocenes. Electrochemical studies on the diiron, dicobalt, and (NiCp)<sub>2</sub>Pn* complexes reveal at least three redox events for each. <strong>Chapter five</strong> documents the successful synthesis and characterisation of monometallic complexes of iron and manganese with Pn*H ligands. The isostructural complexes Fe(Pn*H)<sub>2</sub> and Mn(Pn*H)<sub>2</sub> can have been characterised crystallographically, and are potential precursors for accessing heterometallic, and multimetallic complexes. Mn(Pn*H)<sub>2</sub> is a rare example of a manganese sandwich compound and magnetic studies on a single isomer in the solution and solid states suggest it adopts intermediate spin states of S = 2 in solution, and S = 3/2 in the solid state. <strong>Chapter six</strong> gives experimental details for all syntheses and studies described in the preceding chapters. <strong>Chapter seven</strong> provides characterising data for all new compounds. Fitting data for VT NMR and SQUID studies are provided in the <strong>appendix</strong> at the end of this thesis. Crystallographic data in the form of .cif files, DFT output files, and raw SQUID data, can be found in the <strong>electronic appendix</strong>.

Page generated in 0.0482 seconds