• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic analysis of diffusion and convection in porous catalysts

Beskari, Mohamed Ali January 1997 (has links)
No description available.
2

Production of hydrogen by reforming of crude ethanol

Akande, Abayomi John 10 March 2005
<p>The purpose of this work was to design and to develop a high performance catalyst for the production of hydrogen from reforming of crude ethanol and also, to develop the kinetics and reactor model of crude ethanol reforming process. Crude ethanol reforming is an endothermic reaction of ethanol and other oxygenated hydrocarbons such as (lactic acid, glycerol and maltose) with water present in fermentation broth to produce hydrogen (H2) and carbon dioxide (CO2). Ni/Al2O3 catalysts were prepared using different preparation methods such as coprecipitation, precipitation and impregnation methods with different Ni loadings of 10 25 wt.%, 10-20 wt.%, and 10-20 wt.% respectively.</p><p>All catalysts were characterised by thermogravimetric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), (including X-ray line broadening), temperature programmed reduction (TPR), BET surface area measurements, pore volume and pore size distribution analysis. TG/DSC analyses for the uncalcined catalysts showed the catalyst were stable up from 600oC. XRD analyses showed the presence of NiO, NiAl2O4 and Al2O3 species on the calcined catalysts whereas Ni, NiAl2O4, and Al2O3 were present on reduced catalysts. BET surface area decreased and average pore diameter reached a maximum and then decreased as the Ni loading increased. The temperature programmed reduction profiles showed peaks corresponding to the reduction of NiO between 400-600oC and reduction of NiAl2O4 between 700-800oC. Catalyst screening was performed in a micro reactor with calcination temperature, reaction temperature and the ratio of catalyst weight to crude ethanol flow rate (W/Fcrude-C2H5OH) of 600 oC, 400oC and 0.59 h respectively. Maximum crude-ethanol conversion of 85 mol% was observed for catalyst with 15wt% Ni loading prepared by precipitation method (PT15), while maximum hydrogen yield (= 4.33 moles H2 / mol crude-ethanol feed) was observed for catalyst with 15wt% Ni loading prepared by coprecipitation (CP15). </p><p>Performance tests were carried out on (CP15) in which variables such as space velocity (WHSV) 1.68h-1to 4.68h-1, reduction temperature 400 to 600oC and reaction temperature 320 to 520 oC, were changed for optimum performance evaluation of the selected catalyst. The catalyst deactivated over first three hours of 11 hours time-on-stream (TOS) before it stabilized, the reaction conditions resulted in a drop of ethanol conversion from 80 to 70mol%.</p><p>The compounds identified in the liqiud products in all cases were ethanoic acid, butanoic acid, butanal, propanone, propanoic acid, propylene glycol and butanedioic acid. The kinetic analysis was carried out for the rate data obtained for the reforming of crude ethanol reaction that produced only hydrogen and carbon dioxide. These data were fitted to the power law model and Eldey Rideal models for the entire temperature range of 320-520 oC. The activation energy found were 4405 and 4428 kJ/kmol respectively. Also the simulation of reactor model showed that irrespective of the operating temperature, the benefit of an increase in reactor length is limited. It also showed that by neglecting the axial dispersion term in the model the crude ethanol conversion is under predicted. In addition the beneficial effects of W/FAO start to diminish as its value increases (i.e. at lower flow rates).
3

Production of hydrogen by reforming of crude ethanol

Akande, Abayomi John 10 March 2005 (has links)
<p>The purpose of this work was to design and to develop a high performance catalyst for the production of hydrogen from reforming of crude ethanol and also, to develop the kinetics and reactor model of crude ethanol reforming process. Crude ethanol reforming is an endothermic reaction of ethanol and other oxygenated hydrocarbons such as (lactic acid, glycerol and maltose) with water present in fermentation broth to produce hydrogen (H2) and carbon dioxide (CO2). Ni/Al2O3 catalysts were prepared using different preparation methods such as coprecipitation, precipitation and impregnation methods with different Ni loadings of 10 25 wt.%, 10-20 wt.%, and 10-20 wt.% respectively.</p><p>All catalysts were characterised by thermogravimetric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), (including X-ray line broadening), temperature programmed reduction (TPR), BET surface area measurements, pore volume and pore size distribution analysis. TG/DSC analyses for the uncalcined catalysts showed the catalyst were stable up from 600oC. XRD analyses showed the presence of NiO, NiAl2O4 and Al2O3 species on the calcined catalysts whereas Ni, NiAl2O4, and Al2O3 were present on reduced catalysts. BET surface area decreased and average pore diameter reached a maximum and then decreased as the Ni loading increased. The temperature programmed reduction profiles showed peaks corresponding to the reduction of NiO between 400-600oC and reduction of NiAl2O4 between 700-800oC. Catalyst screening was performed in a micro reactor with calcination temperature, reaction temperature and the ratio of catalyst weight to crude ethanol flow rate (W/Fcrude-C2H5OH) of 600 oC, 400oC and 0.59 h respectively. Maximum crude-ethanol conversion of 85 mol% was observed for catalyst with 15wt% Ni loading prepared by precipitation method (PT15), while maximum hydrogen yield (= 4.33 moles H2 / mol crude-ethanol feed) was observed for catalyst with 15wt% Ni loading prepared by coprecipitation (CP15). </p><p>Performance tests were carried out on (CP15) in which variables such as space velocity (WHSV) 1.68h-1to 4.68h-1, reduction temperature 400 to 600oC and reaction temperature 320 to 520 oC, were changed for optimum performance evaluation of the selected catalyst. The catalyst deactivated over first three hours of 11 hours time-on-stream (TOS) before it stabilized, the reaction conditions resulted in a drop of ethanol conversion from 80 to 70mol%.</p><p>The compounds identified in the liqiud products in all cases were ethanoic acid, butanoic acid, butanal, propanone, propanoic acid, propylene glycol and butanedioic acid. The kinetic analysis was carried out for the rate data obtained for the reforming of crude ethanol reaction that produced only hydrogen and carbon dioxide. These data were fitted to the power law model and Eldey Rideal models for the entire temperature range of 320-520 oC. The activation energy found were 4405 and 4428 kJ/kmol respectively. Also the simulation of reactor model showed that irrespective of the operating temperature, the benefit of an increase in reactor length is limited. It also showed that by neglecting the axial dispersion term in the model the crude ethanol conversion is under predicted. In addition the beneficial effects of W/FAO start to diminish as its value increases (i.e. at lower flow rates).
4

Conception et optimisation d’un réacteur-échangeur structuré pour l'hydrogénation du dioxyde de carbone en méthane de synthèse dédié à la filière de stockage d’énergie électrique renouvelable / Design and optimisation of a structured reactor-exchanger for the carbon dioxide hydrogenation into synthetic methane to the renewable electric energy storage

Ducamp, Julien 11 December 2015 (has links)
Découverte en 1902, la méthanation du C02 reçoit un intérêt grandissant pour son application aux procédés de stockage d'énergie électrique nécessaires au développement des énergies renouvelables. Sa mise en œuvre requiert le développement de réacteurs catalytiques innovants répondant au cahier des charges de cette application. Ces travaux sont dédiés à l'étude et l'optimisation de trois types de réacteurs-échangeurs conçus au cours de cette thèse :-un réacteur à lit fixe annulaire, -un réacteur à lit fixe milli-structuré et un réacteur à mousses métalliques supports de catalyseur. Leurs performances globales sont déterminées expérimentalement. La désactivation du catalyseur est étudiée et ses causes identifiées. Une modélisation des trois réacteurs permet la simulation de leur fonctionnement. Les propriétés hydrodynamiques et thermiques de leurs structures internes et les vitesses de réaction sont caractérisées expérimentalement. Les résultats numériques des simulations sont comparés aux expériences et complètent l'étude du comportement des réacteurs. Les modèles identifiés permettent finalement d'étudier les limites et les potentiels de ces réacteurs. / Discovered in 1902, the C02 methanation is getting a growing interest for its application to electricity storage processes needed for the development of renewable anergies. lts implementation requires the development of innovative catalytic reactors compatible with the specifications of this application. The present work focuses on the study of three reactor-exchangers designed during this thesis: - an annular fixed bed reactor, a milli-structured fixed bed reactor and a reactor which uses metallic foams as catalyst carriers. Their global performances are experimentally evaluated. The catalyst deactivation is studied and its causes identified. A modeling of these three reactors allows the simulation of their behavior. The hydrodynamic and thermal properties of their internai structure and the reaction kinetics are experimentally characterized . The numerical results of the simulations are compared to the experimental data and complete the analysis of the reactors behavior.The identified models are finally used to study the limits and the potentialities of the reactors.

Page generated in 0.0703 seconds