Spelling suggestions: "subject:"nilpotent saddle"" "subject:"nilpotente saddle""
1 |
Complex Dynamics and Bifurcations of Predator-prey Systems with Generalized Holling Type Functional Responses and Allee Effects in PreyKottegoda, Chanaka 15 September 2022 (has links)
No description available.
|
2 |
Problème centre-foyer et applicationLaurin, Sophie 04 1900 (has links)
Dans ce mémoire, nous étudions le problème centre-foyer sur un système polynomial. Nous
développons ainsi deux mécanismes permettant de conclure qu’un point singulier
monodromique dans ce système non-linéaire polynomial est un centre. Le premier
mécanisme est la méthode de Darboux. Cette méthode utilise des courbes algébriques
invariantes dans la construction d’une intégrale première. La deuxième
méthode analyse la réversibilité algébrique ou analytique du système. Un système
possédant une singularité monodromique et étant algébriquement ou analytiquement
réversible à ce point sera nécessairement un centre. Comme application, dans le dernier chapitre, nous considérons le modèle de Gauss
généralisé avec récolte de proies. / In this thesis, we study the center-focus problem in a polynomial system. We describe two mechanisms to conclude that a monodromic
singular point in this polynomial system is a center. The first one is the method of Darboux. In this method, one uses invariant algebraic curves to build a first integral. The second method is the algebraic (and analytic) reversibility. A monodromic singularity, which is algebraically or analytically reversible at the
singular point, is necessarily a center.
As an application, in the last chapter, we consider the generalized Gause model
with prey harvesting and a generalized Holling response function of type III.
|
3 |
Problème centre-foyer et applicationLaurin, Sophie 04 1900 (has links)
Dans ce mémoire, nous étudions le problème centre-foyer sur un système polynomial. Nous
développons ainsi deux mécanismes permettant de conclure qu’un point singulier
monodromique dans ce système non-linéaire polynomial est un centre. Le premier
mécanisme est la méthode de Darboux. Cette méthode utilise des courbes algébriques
invariantes dans la construction d’une intégrale première. La deuxième
méthode analyse la réversibilité algébrique ou analytique du système. Un système
possédant une singularité monodromique et étant algébriquement ou analytiquement
réversible à ce point sera nécessairement un centre. Comme application, dans le dernier chapitre, nous considérons le modèle de Gauss
généralisé avec récolte de proies. / In this thesis, we study the center-focus problem in a polynomial system. We describe two mechanisms to conclude that a monodromic
singular point in this polynomial system is a center. The first one is the method of Darboux. In this method, one uses invariant algebraic curves to build a first integral. The second method is the algebraic (and analytic) reversibility. A monodromic singularity, which is algebraically or analytically reversible at the
singular point, is necessarily a center.
As an application, in the last chapter, we consider the generalized Gause model
with prey harvesting and a generalized Holling response function of type III.
|
Page generated in 0.0703 seconds