• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AGE-STRUCTURED PREDATOR-PREY MODELS

Liu, Shouzong 01 August 2018 (has links) (PDF)
In this thesis, we study the population dynamics of predator-prey interactions described by mathematical models with age/stage structures. We first consider fixed development times for predators and prey and develop a stage-structured predator-prey model with Holling type II functional response. The analysis shows that the threshold dynamics holds. That is, the predator-extinction equilibrium is globally stable if the net reproductive number of the predator $\mathcal{R}_0$ is less than $1$, while the predator population persists if $\mathcal{R}_0$ is greater than $1$. Numerical simulations are carried out to demonstrate and extend our theoretical results. A general maturation function for predators is then assumed, and an age-structured predator-prey model with no age structure for prey is formulated. Conditions for the existence and local stabilities of equilibria are obtained. The global stability of the predator-extinction equilibrium is proved by constructing a Lyapunov functional. Finally, we consider a special case of the maturation function discussed before. More specifically, we assume that the development times of predators follow a shifted Gamma distribution and then transfer the previous model into a system of differential-integral equations. We consider the existence and local stabilities of equilibria. Conditions for existence of Hopf bifurcation are given when the shape parameters of Gamma distributions are $1$ and $2$.
2

A predator-prey model in the chemostat with Ivlev functional response

Bolger, Tedra 09 1900 (has links)
It has been shown that the classical Rosenzweig-MacArthur predator-prey model is sensitive to the functional form of the predator response. To see if this sensitivity remains in the highly controlled environment of the chemostat, we use a predator-prey model with three trophic levels and a Holling type II predator response function. We first focus on the analysis of the model using an Ivlev functional response. Local and global dynamics are studied, with global stability of the coexistence equilibrium point obtained under certain conditions. Bifurcation analysis reveals the existence of a stable periodic orbit that appears via a super-critical Hopf bifurcation. The uniqueness of this periodic orbit is explored. Finally, we make comparisons between the dynamics of the model with Ivlev response and Monod response, both of which have nearly identical graphs. The same sensitivity to functional form is observed in the chemostat as in the classical model. / Thesis / Master of Science (MSc)
3

Population Dynamics In Patchy Landscapes: Steady States and Pattern Formation

Zaker, Nazanin 11 June 2021 (has links)
Many biological populations reside in increasingly fragmented landscapes, which arise from human activities and natural causes. Landscape characteristics may change abruptly in space and create sharp transitions (interfaces) in landscape quality. How patchy landscape affects ecosystem diversity and stability depends, among other things, on how individuals move through the landscape. Individuals adjust their movement behaviour to local habitat quality and show preferences for some habitat types over others. In this dissertation, we focus on how landscape composition and the movement behaviour at an interface between habitat patches of different quality affects the steady states of a single species and a predator-prey system. First, we consider a model for population dynamics in a habitat consisting of two homogeneous one-dimensional patches in a coupled ecological reaction-diffusion equation. Several recent publications by other authors explored how individual movement behaviour affects population-level dynamics in a framework of reaction-diffusion systems that are coupled through discontinuous boundary conditions. The movement between patches is incorporated into the interface conditions. While most of those works are based on linear analysis, we study positive steady states of the nonlinear equations. We establish the existence, uniqueness and global asymptotic stability of the steady state, and we classify their qualitative shape depending on movement behaviour. We clarify the role of nonrandom movement in this context, and we apply our analysis to a previous result where it was shown that a randomly diffusing population in a continuously varying habitat can exceed the carrying capacity at steady state. In particular, we apply our results to study the question of why and under which conditions the total population abundance at steady state may exceed the total carrying capacity of the landscape. Secondly, we model population dynamics with a predator-prey system in a coupled ecological reaction-diffusion equation in a heterogeneous landscape to study Turing patterns that emerge from diffusion-driven instability (DDI). We derive the DDI conditions, which consist of necessary and sufficient conditions for initiation of spatial patterns in a one-dimensional homogeneous landscape. We use a finite difference scheme method to numerically explore the general conditions using the May model, and we present numerical simulations to illustrate our results. Then we extend our studies on Turing-pattern formation by considering a predator-prey system on an infinite patchy periodic landscape. The movement between patches is incorporated into the interface conditions that link the reaction-diffusion equations between patches. We use a homogenization technique to obtain an analytically tractable approximate model and determine Turing-pattern formation conditions. We use numerical simulations to present our results from this approximation method for this model. With this tool, we then explore how differential movement and habitat preference of both species in this model (prey and predator) affect DDI.
4

Complex Dynamics and Bifurcations of Predator-prey Systems with Generalized Holling Type Functional Responses and Allee Effects in Prey

Kottegoda, Chanaka 15 September 2022 (has links)
No description available.
5

Feeding Interactions and Their Relevance to Biodiversity under Global Change

Li, Yuanheng 17 March 2017 (has links)
No description available.
6

A class of state-dependent delay differential equations and applications to forest growth / Études d'une classe d'équations à retard dépendant de l'état et application à la croissance de forêts

Zhang, Zhengyang 14 May 2018 (has links)
Cette thèse est consacrée à l'étude d'une classe d'équations différentielles à retard dépendant de l'état -- ces équations provenant d'un modèle structuré en taille. La principale motivation de cette thèse provient de la volonté d'ajuster les paramètres du système d'équations étudiées vis-à-vis des données générées par un simulateur de forêts, appelé SORTIE. Deux types de forêts sont étudiés ici: d'une part une forêt ne comportant qu'une seule espèce d'arbre, et d'autre part une forêt comportant deux espèces d'arbres (au chapitre 2). Les simulations numériques du système d'équations correspondent relativement bien aux données générées par SORTIE, ce qui montre que le système considéré peut être utilisé afin d'écrire la dynamique de populations d'une forêt. De plus, un modèle plus étendu prenant en compte la position spatiale des arbres est proposé dans le chapitre 2, dans le cas de forêts possédant deux espèces d'arbres. Les simulations numériques de ce modèle permettent de visualiser la propagation spatiale des forêts. Les chapitres 3 et 4 se concentrent sur l'analyse mathématique des équations différentielles à retard considérées. Les propriétés du semi-flot associé au système sont étudiées au chapitre 3, où l'on démontre en particulier que ce semi-flot n'est pas continu en temps. Le caractère dissipatif et borné du semi-flot, pour des modèles de forêts comportant une ou deux espèces d'arbres, est étudié dans le chapitre 4. En outre, afin d'étudier la dynamique de population d'une forêt (d'une seule espèce d'arbre) après l'introduction d'un parasite, nous construisons dans le chapitre 5 un système proie-prédateur dont la proie (à savoir la forêt) est modélisée par le système d'équations différentielles à retard dépendant de l'état étudié auparavant, et dont le prédateur (à savoir le parasite) est modélisé par une équation différentielle ordinaire. De nombreuses simulations numériques associées à différents scénarios sont faites, afin d'explorer le comportement complexe des solutions du au couplage proie-prédateur et les équations à retard dépendant de l'état. / This thesis is devoted to the studies of a class of state-dependent delay differential equations. This class of equations is derived from a size-structured model.The motivation comes from the parameter fittings of this system to a forest simulator called SORTIE. Cases of both single species forest and two-species forest are considered in Chapter 2. The numerical simulations of the system correspond relatively very well to the forest data generated by SORTIE, which shows that this system is able to be used to describe the population dynamics of forests. Moreover, an extended model considering the spatial positions of trees is also proposed in Chapter 2 for the two-species forest case. From the numerical simulations of this spatial model one can see the diffusion of forests in space. Chapter 3 and 4 focus on the mathematical analysis of the state-dependent delay differential equations. The properties of semiflow generated by this system are studied in Chapter 3, where we find that this semiflow is not time-continuous. The boundedness and dissipativity of the semiflow for both single species model and multi-species model are studied in Chapter 4. Furthermore, in order to study the population dynamics after the introduction of parasites into a forest, a predator-prey system consisting of the above state-dependent delay differential equation (describing the forest) and an ordinary differential equation (describing the parasites) is constructed in Chapter 5 (only the single species forest is considered here). Numerical simulations in several scenarios and cases are operated to display the complex behaviours of solutions appearing in this system with the predator-prey relation and the state-dependent delay.

Page generated in 0.0644 seconds