• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beneficial therapeutic effects of the L-type calcium channel antagonist nimodipine in experimental autoimmune encephalomyelitis – an animal model for multiple sclerosis / Günstige therapeutische Effekte des L-Typ-Calciumkanal-Antagonisten Nimodipin in der experimentellen autoimmunen Enzephalomyelitis ̶ einem Tiermodell der Multiplen Sklerose

Schampel, Andrea January 2017 (has links) (PDF)
Multiple sclerosis (MS) is the most prevalent neurological disease of the central nervous system (CNS) in young adults and is characterized by inflammation, demyelination and axonal pathology that result in multiple neurological and cognitive deficits. The focus of MS research remains on modulating the immune response, but common therapeutic strategies are only effective in slowing down disease progression and attenuating the symptoms; they cannot cure the disease. Developing an option to prevent neurodegeneration early on would be a valuable addition to the current standard of care for MS. Based on our results we suggest that application of nimodipine could be an effective way to target both neuroinflammation and neurodegeneration. We performed detailed analyses of neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and in in vitro experiments regarding the effect of the clinically well-established L-type calcium channel antagonist nimodipine. Nimodipine treatment attenuated the course of EAE and spinal cord histopathology. Furthermore, it promoted remyelination. The latter could be due to the protective effect on oligodendrocytes and oligodendrocyte precursor cells (OPCs) we observed in response to nimodipine treatment. To our surprise, we detected calcium channel-independent effects on microglia, resulting in apoptosis. These effects were cell type-specific and independent of microglia polarization. Apoptosis was accompanied by decreased levels of nitric oxide (NO) and inducible NO synthase (iNOS) in cell culture as well as decreased iNOS expression and reactive oxygen species (ROS) activity in EAE. Overall, application of nimodipine seems to generate a favorable environment for regenerative processes and could therefore be a novel treatment option for MS, combining immunomodulatory effects while promoting neuroregeneration. / Multiple Sklerose (MS) ist die häufigste neurologische Erkrankung des zentralen Nervensystems (ZNS) von jungen Erwachsenen und charakterisiert durch Inflammation, Demyelinisierung und axonale Pathologie. Diese Prozesse bewirken zahlreiche neurologische und kognitive Defizite. Der Schwerpunkt in der MS-Forschung besteht derzeit vor allem in der Modulation der Immunantwort, jedoch sind herkömmliche Therapiestrategien bislang nur in der Lage die Progression der Erkrankung zu verlangsamen und die Symptome zu lindern, die Krankheit kann jedoch immer noch nicht geheilt werden. Die Möglichkeit, den Prozess der Neurodegeneration früh aufzuhalten, würde eine wertvolle Ergänzung zu herkömmlichen Therapien darstellen. Basierend auf den Ergebnissen dieser Studie schlagen wir vor, dass die Applikation von Nimodipin eine elegante Möglichkeit wäre, um sowohl die Neuroinflammation als auch die -degeneration zu bekämpfen. Um den Effekt des klinisch gut etablierten Calciumkanal-Antagonisten Nimodipin zu untersuchen, haben wir detaillierte Analysen der Degeneration in der experimentellen autoimmunen Enzephalomyelitis (EAE), einem Tiermodell der MS, und in in vitro Untersuchungen durchgeführt. Applikation von Nimodipin verringerte das klinische Erscheinungsbild der EAE sowie die Histopathologie des Rückenmarkes. Außerdem förderte es die Regeneration. Die Ursache für letzteres liegt vermutlich am protektiven Effekt der Behandlung mit Nimodipin auf die Oligodendrozyten und deren Vorläuferzellen. Überraschenderweise, konnten wir Calciumkanal-unspezifische Effekte auf Mikroglia feststellen, die in Apoptose resultierten und sowohl Zelltyp-spezifisch als auch unabhängig von der Polarisierung der Mikrogliazellen waren. Apoptose wurde begleitet von reduzierten Spiegeln an Stickstoffmonoxid (NO) und der induzierbaren NO Synthase (iNOS) in Zellkultur, sowie einer reduzierten Expression von iNOS und dem geringeren Vorkommen von reaktiven oxygenen Spezies (ROS) in der EAE. Zusammenfassend gehen wir davon aus, dass die Applikation von Nimodipin eine günstige Umgebung für regenerative Prozesse schafft. Daher stellt die Applikation dieser Substanz eine neue Behandlungsmöglichkeit für die MS dar, insbesondere da sie Möglichkeiten der Immunmodulation mit der Förderung von Neuroregeneration verbindet.
2

Nimodipin versus Milrinon bei der endovaskulären zerebralen Vasospasmolyse - gleichwertiger oder komplementärer Einsatz?: Eine retrospektive Analyse

Jentzsch, Jennifer 11 March 2024 (has links)
Background: Cerebral vasospasm (CVS) continues to account for high morbidity and mortality in patients surviving the initial aneurysmal subarachnoid hemorrhage (SAH). Nimodipine is the only drug known to reduce delayed cerebral ischemia (DCI), but it is believed not to affect large vessel CVS. Milrinone has emerged as a promising option. Our retrospective study focused on the effectiveness of the intra-arterial application of both drugs in monotherapy and combined therapy. Methods: We searched for patients with aneurysmal SAH, angiographically confirmed CVS, and at least one intra-arterial pharmacological angioplasty. Ten defined vessel sections on angiograms were assessed before and after vasodilator infusion. The improvement in vessel diameters was compared to the frequency of DCI-related cerebral infarction before hospital discharge and functional outcome reported as the modified Rankin Scale (mRS) score after 6 months. Results: Between 2014 and 2021, 132 intra-arterial interventions (144 vascular territories, 12 bilaterally) in 30 patients were analyzed for this study. The vasodilating effect of nimodipine was superior to milrinone in all intradural segments. There was no significant intergroup difference concerning outcome in mRS (p = 0.217). Only nimodipine or the combined approach could prevent DCI-related infarction (both 57.1%), not milrinone alone (87.5%). Both drugs induced a doubled vasopressor demand due to blood pressure decrease, but milrinone alone induced tachycardia. Conclusions: The monotherapy with intra-arterial nimodipine was superior to milrinone. Nimodipine and milrinone may be used complementary in an escalation scheme with the administration of nimodipine first, complemented by milrinone in cases of severe CVS. Milrinone monotherapy is not recommended.
3

Organotypic brain slice co-cultures of the dopaminergic system - A model for the identification of neuroregenerative substances and cell populations / Organotypische Co-Kulturen dopaminerger Projektionssysteme- Modelle zur Identifizierung neuroregenerativer Substanzen und Zellpopulationen

Sygnecka, Katja 19 November 2015 (has links) (PDF)
The development of new therapeutical approaches, devised to foster the regeneration of neuronal circuits after injury and/or in neurodegenerative diseases, is of great importance. The impairment of dopaminergic projections is especially severe, because these projections are involved in crucial brain functions such as motor control, reward and cognition. In the work presented here, organotypic brain slice co-cultures of (a) the mesostriatal and (b) the mesocortical dopaminergic projection systems consisting of tissue sections of the ventral tegmental area/substantia nigra (VTA/SN), in combination with the target regions of (a) the striatum (STR) or (b) the prefrontal cortex (PFC), respectively, were used to evaluate different approaches to stimulate neurite outgrowth: (i) inhibition of cAMP/cGMP turnover with 3’,5’ cyclic nucleotide phosphodiesterase inhibitors (PDE-Is), (ii) blockade of calcium currents with nimodipine, and (iii) the co-cultivation with bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs). The neurite growth-promoting properties of the tested substances and cell populations were analyzed by neurite density quantification in the border region between the two brain slices, using biocytin tracing or tyrosine hydroxylase labeling and automated image processing procedures. In addition, toxicological tests and gene expression analyses were conducted. (i) PDE-Is were applied to VTA/SN+STR rat co-cultures. The quantification of neurite density after both biocytin tracing and tyrosine hydroxylase labeling revealed a growth promoting effect of the PDE2A-Is BAY60-7550 and ND7001. The application of the PDE10-I MP-10 did not alter neurite density in comparison to the vehicle control. (ii) The effects of nimodipine were evaluated in VTA/SN+PFC rat co-cultures. A neurite growth-promoting effect of 0.1 µM and 1 µM nimodipine was demonstrated in a projection system of the CNS. In contrast, the application of 10 µM nimodipine did not alter neurite density, compared to the vehicle control, but induced the activation of the apoptosis marker caspase 3. The expression levels of the investigated genes, including Ca2+ binding proteins (Pvalb, S100b), immediate early genes (Arc, Egr1, Egr2, Egr4, Fos and JunB), glial fibrillary acidic protein, and myelin components (Mal, Mog, Plp1) were not significantly changed (with the exception of Egr4) by the treatment with 0.1 µM and 1 µM nimodipine. (iii) Bulk BM-MSCs that were classically isolated by plastic adhesion were compared to the subpopulation Sca-1+Lin-CD45--derived MSCs (SL45-MSCs). The neurite growth-promoting properties of both MSC populations were quantified in VTA/SN+PFC mouse co-cultures. For this purpose, the MSCs were seeded on glass slides that were placed underneath the co-cultures. A significantly enhanced neurite density within the co-cultures was induced by both bulk BM-MSCs and SL45-MSCs. SL45-MSCs increased neurite density to a higher degree. The characterization of both MSC populations revealed that the frequency of fibroblast colony forming units (CFU-f ) is 105-fold higher in SL45-MSCs. SL45-MSCs were morphologically more homogeneous and expressed higher levels of nestin, BDNF and FGF2 compared to bulk BM-MSCs. Thus, this work emphasizes the vast potential for molecular targeting with respect to the development of therapeutic strategies in the enhancement of neurite regrowth.
4

Organotypic brain slice co-cultures of the dopaminergic system - A model for the identification of neuroregenerative substances and cell populations

Sygnecka, Katja 23 October 2015 (has links)
The development of new therapeutical approaches, devised to foster the regeneration of neuronal circuits after injury and/or in neurodegenerative diseases, is of great importance. The impairment of dopaminergic projections is especially severe, because these projections are involved in crucial brain functions such as motor control, reward and cognition. In the work presented here, organotypic brain slice co-cultures of (a) the mesostriatal and (b) the mesocortical dopaminergic projection systems consisting of tissue sections of the ventral tegmental area/substantia nigra (VTA/SN), in combination with the target regions of (a) the striatum (STR) or (b) the prefrontal cortex (PFC), respectively, were used to evaluate different approaches to stimulate neurite outgrowth: (i) inhibition of cAMP/cGMP turnover with 3’,5’ cyclic nucleotide phosphodiesterase inhibitors (PDE-Is), (ii) blockade of calcium currents with nimodipine, and (iii) the co-cultivation with bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs). The neurite growth-promoting properties of the tested substances and cell populations were analyzed by neurite density quantification in the border region between the two brain slices, using biocytin tracing or tyrosine hydroxylase labeling and automated image processing procedures. In addition, toxicological tests and gene expression analyses were conducted. (i) PDE-Is were applied to VTA/SN+STR rat co-cultures. The quantification of neurite density after both biocytin tracing and tyrosine hydroxylase labeling revealed a growth promoting effect of the PDE2A-Is BAY60-7550 and ND7001. The application of the PDE10-I MP-10 did not alter neurite density in comparison to the vehicle control. (ii) The effects of nimodipine were evaluated in VTA/SN+PFC rat co-cultures. A neurite growth-promoting effect of 0.1 µM and 1 µM nimodipine was demonstrated in a projection system of the CNS. In contrast, the application of 10 µM nimodipine did not alter neurite density, compared to the vehicle control, but induced the activation of the apoptosis marker caspase 3. The expression levels of the investigated genes, including Ca2+ binding proteins (Pvalb, S100b), immediate early genes (Arc, Egr1, Egr2, Egr4, Fos and JunB), glial fibrillary acidic protein, and myelin components (Mal, Mog, Plp1) were not significantly changed (with the exception of Egr4) by the treatment with 0.1 µM and 1 µM nimodipine. (iii) Bulk BM-MSCs that were classically isolated by plastic adhesion were compared to the subpopulation Sca-1+Lin-CD45--derived MSCs (SL45-MSCs). The neurite growth-promoting properties of both MSC populations were quantified in VTA/SN+PFC mouse co-cultures. For this purpose, the MSCs were seeded on glass slides that were placed underneath the co-cultures. A significantly enhanced neurite density within the co-cultures was induced by both bulk BM-MSCs and SL45-MSCs. SL45-MSCs increased neurite density to a higher degree. The characterization of both MSC populations revealed that the frequency of fibroblast colony forming units (CFU-f ) is 105-fold higher in SL45-MSCs. SL45-MSCs were morphologically more homogeneous and expressed higher levels of nestin, BDNF and FGF2 compared to bulk BM-MSCs. Thus, this work emphasizes the vast potential for molecular targeting with respect to the development of therapeutic strategies in the enhancement of neurite regrowth.:Table of contents Abbreviations 1 1. Introduction 2 1.1 The dopaminergic system 2 1.2 Neurite regeneration following mechanical lesions of the CNS 7 1.3 Organotypic brain slice co-cultures 8 1.4 Promising substances and cells to enhance neuroregeneration 10 1.5 The aim of the thesis 14 2. The original research articles 16 2.1 Phosphodiesterase 2 inhibitors promote axonal outgrowth in organotypic slice co-cultures 17 2.2 Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures 35 2.3 Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model 50 3. References 66 Appendices 73 Summary 73 Zusammenfassung 78 Curriculum Vitae 84 Track Record 85 Selbständigkeitserklärung 87 Acknowledgments 88

Page generated in 0.0372 seconds