• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Micro/Nanosensor Elements and Packaging Techniques for Oceanography

Aravamudhan, Shyam 25 October 2007 (has links)
In this research, novel high resolution reinforced diaphragm MEMS piezoresistive pressure sensors were designed, fabricated and tested to measure physical phenomena (such as depth/pressure variations) in the ocean. To complement the physical sensing elements, a microfluidic electrochemical nitrate sensor, was also developed to detect chemical fluxes. The electrochemical sensor was designed and packaged to conform to a flow through system. The multisensor approach will enable better measurement quality compared to the current ocean sensors. This, in turn, will potentially improve the current understanding of physical and biogeochemical processes from coastal to deep-sea environment. The pressure sensor element utilized a reinforced bulk micromachined diaphragm to achieve both higher sensitivity (27% higher, model data) and wider linear pressure operating range (> 400 psi, from combination of inner and outer bridge) compared to the conventional single diaphragm design. A temperature compensation bridge was incorporated on the sensor die to account for temperature drifts. A two-level packaging (wafer and system-level) scheme with protective coatings were developed to test the sensor in "simulated" ocean conditions. Finally, the reinforced diaphragm edge and the bossed structures were designed and fabricated using the masked-maskless etching process and their sensor performance were evaluated against the single diaphragm design. A nanowire-based Electrochemical detection-on-Chip (EoC) system was also developed to detect chemical/biological markers, especially nitrate fluxes. Different sensing modalities,involving a variety of nanosensor electrodes and different assembly techniques were investigated for suitability as electrochemical nitrate sensor. These architectures were also evaluated for robustness as a sensing platform. Enzyme-modified Au nanowires based electrochemical sensor showed excellent sensitivity (µM level) to biomarkers (cholesterol) in biological fluids (blood).These sensors, however, exhibited poor detection limits towards nitrate ions. Doped polypyrrole nanowire electrodes proved to be effective as nitrate sensors. A detection limit of 4.5±1 µM,sensitivity of 1.65 nAµM and stability of <15% variation from interfering ions were achieved on testing in a flow through environment. The nitrate sensor performance was at par with the current state of the art. Additionally, these sensors are batch fabricated (as arrays) reducing cost, require smaller sample volume, lesser space, power and are less prone to contamination problems.
2

Caractérisation du transporteur de nitrate à double affinité, MtNPF6.8 (MtNRT1.3), de Medicago truncatula : rôles dans le transport et la perception du signal nitrate / Characterisation of the double affinity nitrate transporter MtNPF6.8 (MtNRT1.3) of Medicago truncatula : involvement in nitrate transport and signaling

Pellizzaro, Anthoni 31 March 2015 (has links)
Le nitrate, source majeur d’azote pour la plupart des plantes,n’est pas seulement un élément nutritif mais est aussi une molécule signale. Il existe cependant des réponses au nitrate contrastées entre les différentes plantes supérieures. Chez Medicago truncatula, espèce modèle de la famille des légumineuses, le nitrate a un effet inhibiteur sur la croissance de la racine primaire en phase post-germinative. Une étude de génétique quantitative a montré qu’un transporteur de nitrate se situe au pic d’un QTL impliqué dans la croissance de la racine primaire. La caractérisation fonctionnelle de ce transporteur, nommé MtNRT1.3 et renommé MtNPF6.8, a montré que celui-ci est à double affinité pour le nitrate. Ce transporteur est alors susceptible de participer à l’influx de nitrate dans la plante. Après l’obtention de trois génotypes mutants RNAi stables, les expérimentations utilisant duK15NO3 ont montré que ce transporteur participe effectivement à l’influx de nitrate lié au système de transport à faible affinité inductible dans la plante (iLATS). En revanche,la mutation de MtNPF6.8 ne semble pas avoir de conséquence sur le métabolisme azoté. Par ailleurs, les études sur la croissance de la racine primaire ont permis de confirmer l’implication du transporteur sur ce caractère phénotypique. L’inhibition de croissance de la racine primaire observée sur nitrate chez le génotype sauvage est alors imputée, à l’échelle cellulaire, à une modulation de l'élongation cellulaire. La possibilité que l’ABA, hormone végétale, joue un rôle dans la médiation de cette réponse dépendant du nitrate, est fortement favorisée. L’ensemble de résultats, conforté par une étude de mutants exprimant ce transporteur chez A. thaliana, indique donc que MtNPF6.8 est un senseur de nitrate pour la plante en phase post germinative,ceci indépendamment de sa fonction de transport de nitrate. / Nitrate, a major nitrogen source for most plants, is not only anutrient but also a signaling molecule. However, there arecontrasting responses to nitrate between different higherplants. In the model legume Medicago truncatula, nitrate hasan inhibitory effect on the primary root growth in postgerminationphase. A quantitative genetic study has shownthat a nitrate transporter is localized at the peak of a QTLinvolved in the primary root growth. Functionalcharacterization of the transporter, named MtNRT1.3 andrenamed MtNPF6.8, showed that it encodes a dual affinitynitrate transporter. MtNPF6.8 is likely to participate in thenitrate influx in the plant. After obtaining three knockdownlines by RNA interference, experiments using K15NO3 showedthat this transporter is effect involved in nitrate influx relatedto the inducible low affinity transport system (iLATS).However, mutation in MtNPF6.8 does not any effect onnitrogen metabolism. In addition, studies on the primary rootgrowth have confirmed the involvement of the transporteron phenotypic trait. In wild-type plants, cortical cell sizedecreased after nitrate treatment, showing that primary rootgrowth was due to this reduced cell elongation. Thepossibility that ABA also plays a role in mediating this nitratedependent response is heavily favored. All these results,reinforced by a study of mutants expressing this transporterin A. thaliana, indicate that MtNPF6.8 is a nitrate sensor forMedicago in the post-germination phase, independently ofits nitrate transport activity.

Page generated in 0.0414 seconds