• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stilbazoles and Schiff bases in the 4-quinazolone group ...

Beal, George Denton, January 1911 (has links)
Thesis (Ph. D.)--Columbia University. / Biographical sketch. Includes bibliographical references.
2

Stilbazoles and Schiff bases in the 4-quinazolone group ...

Beal, George Denton, January 1911 (has links)
Thesis (Ph. D.)--Columbia University. / Biographical sketch. Includes bibliographical references.
3

Studies of BN-Isosteres of Carbocyclic Systems

Giustra, Zachary Xavier January 2018 (has links)
Thesis advisor: Shih-Yuan Liu / The first three chapters of this dissertation elaborate on certain facets of the isosteric relationship between different types of boron-nitrogen-containing heterocycles and the corresponding all-carbon compounds. In this vein, Chapter 1 describes selective photoisomerization of aromatic 1,2-dihydro-1,2-azaborines to BN-analogues of bicyclo[2.2.0]hexa-2,5-diene (Dewar benzene). In one instance, the photoisomer product was further derivatized into a series of disubstituted cyclobutanes through manipulations of the boron functionality. Chapter 2 discloses a combined experimental/theoretical mechanistic investigation of preliminary hydrogen release from the amine borane unit in a pair of BN-cycloalkanes. In Chapter 3, the kinetics of complementary dehydrogenation of the alkyl units in a BN-cyclohexene derivative are compared with those of related six-membered carbocycles. Chapter 4 treats with the separate subject of enantioselective silylation of glycerol by a catalytic strategy centered around reversible covalent binding of substrate hydroxyl groups. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
4

Construction of Functionalized Heterocycles by Palladium-catalyzed Domino Reactions with Strained Alkenes

Thansandote, Praew Petcharat 23 February 2011 (has links)
The Lautens group has a long-standing interest in developing novel approaches to heterocycle synthesis. One such approach is a Pd-catalyzed, norbornene-mediated domino reaction which can form up to three carbon-carbon bonds in one synthetic sequence. The key additive is norbornene which acts similar to a catalyst by assembling the scaffold to enable the formation of a carbon-carbon bond, though is not incorporated into the final compound. The reaction involves C-H bond functionalization as a key step and a Pd(IV) complex as a key intermediate. The goal of the current thesis was to introduce reactive heteroatoms to this domino reaction for the first time, with particular focus on the introduction of nitrogen. Methodologies were developed to present novel syntheses of heterocycles with high pharmaceutical interest. Our initial study focused on the selective functionalization of thiophenes to give multi-substituted sulfur compounds. To synthesize pharmaceutically important nitrogen heterocycles, we demonstrated for the first time that an amination reaction was compatible with the domino reaction. This development led to novel approaches to synthesize substituted indolines, indoles, tetrahydroquinolines, benzomorpholines, phenoxazines, dihydrodibenzoxazepines, tetrahydroisoquinolines, tetrahydroisoquinolinones and tetrahydrobenzazepines. In contrast to the use of norbornene in a catalytic manner, we demonstrated that heterocycles could also be synthesized by the incorporation of strained alkenes. We developed a conceptually novel approach to generate nitrogen heterocycles by using norbornadiene as an acetylene synthon. A palladium-catalyzed annulation of substituted haloanilines with norbornadiene led to functionalized indolines. These indolines could be rapidly converted to benzenoid-substituted indoles and tricyclic indolines, which form the core of many biologically active compounds. Extension to the use of substituted halobenzamides led to functionalized isoquinolinones. Finally, we embarked on a study to perform selective palladium-catalyzed C-H functionalization reactions with N-iodoarylpyrroles and strained alkenes. We will present the reaction conditions necessary to favour aryl C-H functionalization over pyrrole C-H functionalization.
5

Construction of Functionalized Heterocycles by Palladium-catalyzed Domino Reactions with Strained Alkenes

Thansandote, Praew Petcharat 23 February 2011 (has links)
The Lautens group has a long-standing interest in developing novel approaches to heterocycle synthesis. One such approach is a Pd-catalyzed, norbornene-mediated domino reaction which can form up to three carbon-carbon bonds in one synthetic sequence. The key additive is norbornene which acts similar to a catalyst by assembling the scaffold to enable the formation of a carbon-carbon bond, though is not incorporated into the final compound. The reaction involves C-H bond functionalization as a key step and a Pd(IV) complex as a key intermediate. The goal of the current thesis was to introduce reactive heteroatoms to this domino reaction for the first time, with particular focus on the introduction of nitrogen. Methodologies were developed to present novel syntheses of heterocycles with high pharmaceutical interest. Our initial study focused on the selective functionalization of thiophenes to give multi-substituted sulfur compounds. To synthesize pharmaceutically important nitrogen heterocycles, we demonstrated for the first time that an amination reaction was compatible with the domino reaction. This development led to novel approaches to synthesize substituted indolines, indoles, tetrahydroquinolines, benzomorpholines, phenoxazines, dihydrodibenzoxazepines, tetrahydroisoquinolines, tetrahydroisoquinolinones and tetrahydrobenzazepines. In contrast to the use of norbornene in a catalytic manner, we demonstrated that heterocycles could also be synthesized by the incorporation of strained alkenes. We developed a conceptually novel approach to generate nitrogen heterocycles by using norbornadiene as an acetylene synthon. A palladium-catalyzed annulation of substituted haloanilines with norbornadiene led to functionalized indolines. These indolines could be rapidly converted to benzenoid-substituted indoles and tricyclic indolines, which form the core of many biologically active compounds. Extension to the use of substituted halobenzamides led to functionalized isoquinolinones. Finally, we embarked on a study to perform selective palladium-catalyzed C-H functionalization reactions with N-iodoarylpyrroles and strained alkenes. We will present the reaction conditions necessary to favour aryl C-H functionalization over pyrrole C-H functionalization.
6

STUDIES IN AZIRIDINE-ALLYLSILANE CHEMISTRY: EXTENSION OF SCOPE

Lapinsky, David J. 20 December 2002 (has links)
No description available.
7

Rhodium-catalyzed asymmetric amination of trichloroacetimidates with application to nitrogen heterocycle synthesis

Arnold, Jeffrey Scott 01 May 2014 (has links)
Chiral quaternary centers possessing a bond to nitrogen are an important class of amine compounds, however, methods for their enantioselective preparation remain sparse. The focus of my graduate research described herein has been the development of a novel rhodium-catalyzed regio- and enantioselective allylic aryl amination of tertiary trichloroacetimidates for the synthesis of amine-bearing quaternary centers (also termed α,α-disubstituted amines). Prior to our work, allylic carbonates and acetates had been successfully utilized in transition-metal catalyzed substitution reactions with anilines for the asymmetric synthesis of tertiary centers. In contrast, these electrophiles have not proven useful in dynamic kinetic asymmetric transformations (DYKAT) that yield enantioenriched amine products, and no reports describing the asymmetric preparation of α,α-disubstituted allylic aryl amines via allylic substitution are noted. Many of the ideas for development of our rhodium-catalyzed amination method were based upon the findings of Overman where linear allylic trichloroacetimidates are utilized in [3,3]-sigmatropic rearrangements and substitution reactions by oxygen nucleophiles under palladium (II) catalysis. Our method diverges from this previous work by application of branched allylic trichloroacetimidates where the olefin component is mono-substituted, and the use of a transition-metal complex capable of facile oxidative addition to an intermediate organometallic complex. We hypothesized that bidentate chelation of these substrates at the imidate nitrogen and the relatively unimpeded olefin by a rhodium (I) complex would lead to rapid ionization to an activated complex and competent electrophile for substitution by neutral aniline nucleophiles. This premise was supported by many control studies and resulted in the development of a highly regioselective amination of branched allylic trichloroacetimidates for the operationally simple synthesis of α-substituted and α,α-disubstituted allylic aryl amines. Work followed utilizing chiral diene ligands that rendered the reaction enantioselective for preparation of enantioenriched tertiary and quaternary amine-containing centers. A highlight of these studies is the first example of DYKAT using a tertiary electrophile and an aryl amine nucleophile. The reaction is of broad substrate scope, is tolerant of varied functionality and substitution patterns on the nucleophilic partner, and solves regioselectivity issues often encountered with some substrate and aniline classes. I end by showing the synthetic utility of our rhodium-catalyzed reaction by applying this method to the synthesis of enantioenriched amino acids and construction of 7-membered nitrogen-containing heterocycles by a 2-step DYKAT amination and olefin hydroacylation sequence.
8

Synthesis Of 1,2,3,5-tetrasubstituted Pyrrole Derivatives Via 5-exo-dig Type Cyclization And Stereoselective Functionalisation Of Ferrocene Derivatives

Kayalar, Metin 01 January 2005 (has links) (PDF)
ABSTRACT SYNTHESIS OF 1,2,3,5-TETRASUBSTITUTED PYRROLE DERIVATIVES VIA 5-EXO-DIG TYPE CYCLIZATION AND STEREOSELECTIVE FUNCTIONALISATION OF FERROCENE DERIVATIVES Metin Kayalar M.S., Department of Chemistry Supervisor: Prof. Dr. Ayhan S. Demir January 2005, 102 pages A convenient and new method for the synthesis of 1,2,3,5-tetrasubstituted pyrrole derivatives starting from 1,3,-dicarbonyl compounds through acid catalyzed cyclization reaction is described. Alkylation of 1,3-dicarbonyl compound with propargyl bromide followed by one step cyclization with the introduction of primary amines in the presence of catalytic amount of triflouroacetic acid (TFA) affords the corresponding pyrrole derivatives in high yields. The investigations on the studies of developing a new method for catalytic and stereoselective functionalisation of ferrocene derivatives were summarized. Functionalisation studies were carried out in three main strategy the first one of which is carboxylation, second one is arylation and the last one is oxidative cross-coupling with &amp / #945 / , &amp / #946 / -unsaturated carbonyl compounds.
9

Transition Metal Catalysis: Construction of C–N and C–C bonds en route to Nitrogen Heterocycles, Chiral Esters and 6-deoxyerythronolide B

Hsieh, Tom Han-Hsiao 09 January 2012 (has links)
The Dong research group is interested in harnessing the power of transition metal catalysis to transform simple molecules and reagents (such as carbon monoxide, hydrogen gas, olefins, and C–H and C–O bonds) into valuable products (such as functionalized heterocycles, chiral carbonyl compounds and natural products). This thesis will describe our continual effort to achieve this goal. Part I describes the Pd-catalyzed functionalization of sp2 and sp3 C–H bonds. Carbon monoxide is used as a stoichiometric reductant in the cyclization of diarylnitroalkenes to afford biologically relevant 3-arylindoles and other N-containing heterocycles with carbon dioxide as the only stoichiometric byproduct. Also, an aryl sulfoxide moiety is shown to direct the arylation of sp3 C–H bonds to afford beta-functionalized amides. Part II describes the Ru-catalyzed sp3 C–O bond activation of alkoxypyridines and related heterocycles. In this transformation, an O- to N-alkyl migratory rearrangement occurs to afford N-alkylated pyridones which are structures found in many natural products and pharmaceutical agents. Part III describes our pursuit of metal-catalyzed asymmetric synthesis. Readily available benzylic bromides are carbonylated with carbon monoxide in alcoholic solvent mixtures. The resulting medicinally relevant 2-arylpropionic esters are obtained with moderate to good enantioselectivities. Preliminary results for the asymmetric hydrogenation of gem-diarylethylenes and novel ligand development are also disclosed. Part IV describes our efforts towards the total synthesis of 6-deoxyerythronolide B. Our retrosynthetic analysis of the macrolide antibiotic involves disconnections at the lactone linkage and between C7 and C8. The two equally complex fragments were prepared via reliable aldol, hydroboration, crotylation and redox chemistry. Rather than the typical macrolactonization method to form the 14-membered ring, we propose an alternative strategy where we plan to cyclize with a metal-catalyzed ring-closing metathesis event. Currently, this step is under investigation by other members in the group.
10

Transition Metal Catalysis: Construction of C–N and C–C bonds en route to Nitrogen Heterocycles, Chiral Esters and 6-deoxyerythronolide B

Hsieh, Tom Han-Hsiao 09 January 2012 (has links)
The Dong research group is interested in harnessing the power of transition metal catalysis to transform simple molecules and reagents (such as carbon monoxide, hydrogen gas, olefins, and C–H and C–O bonds) into valuable products (such as functionalized heterocycles, chiral carbonyl compounds and natural products). This thesis will describe our continual effort to achieve this goal. Part I describes the Pd-catalyzed functionalization of sp2 and sp3 C–H bonds. Carbon monoxide is used as a stoichiometric reductant in the cyclization of diarylnitroalkenes to afford biologically relevant 3-arylindoles and other N-containing heterocycles with carbon dioxide as the only stoichiometric byproduct. Also, an aryl sulfoxide moiety is shown to direct the arylation of sp3 C–H bonds to afford beta-functionalized amides. Part II describes the Ru-catalyzed sp3 C–O bond activation of alkoxypyridines and related heterocycles. In this transformation, an O- to N-alkyl migratory rearrangement occurs to afford N-alkylated pyridones which are structures found in many natural products and pharmaceutical agents. Part III describes our pursuit of metal-catalyzed asymmetric synthesis. Readily available benzylic bromides are carbonylated with carbon monoxide in alcoholic solvent mixtures. The resulting medicinally relevant 2-arylpropionic esters are obtained with moderate to good enantioselectivities. Preliminary results for the asymmetric hydrogenation of gem-diarylethylenes and novel ligand development are also disclosed. Part IV describes our efforts towards the total synthesis of 6-deoxyerythronolide B. Our retrosynthetic analysis of the macrolide antibiotic involves disconnections at the lactone linkage and between C7 and C8. The two equally complex fragments were prepared via reliable aldol, hydroboration, crotylation and redox chemistry. Rather than the typical macrolactonization method to form the 14-membered ring, we propose an alternative strategy where we plan to cyclize with a metal-catalyzed ring-closing metathesis event. Currently, this step is under investigation by other members in the group.

Page generated in 0.0788 seconds