Spelling suggestions: "subject:"anitrogen isotope"" "subject:"anitrogen lsotope""
1 |
Nitrogen and carbon cycling in the South Atlantic Ocean : a stable isotope study along a 40°S transect (UK GEOTRACES)Tuerena, Robyn Elizabeth January 2015 (has links)
Fixed N (nitrate, nitrite, and ammonium) is a limiting nutrient for photosynthesis in the surface ocean. The rates and relative importance of N cycling processes, however, are temporally and spatially complex, which hamper their direct measurement and quantification. The South Atlantic subtropical front separates the Atlantic Ocean and the subantarctic, an area which can elucidate information about water masses both entering and leaving the basin. Through the GEOTRACES programme, an oceanographic section across 40°S in the South Atlantic is used to investigate biogeochemical cycling of nitrogen and carbon in this region. Hydrographic data, in combination with the isotopic composition of nitrate (NO3-), particulate organic carbon and particulate nitrogen (δ15NNO3, δ18ONO3, δ13CPOC, δ15NPN), is used to provide integrative measurements for temporally and spatially variable processes of the marine N-cycle and C-cycle. A thorough examination of the stable isotope cycling of particulate and dissolved N across the subtropical front is used to quantify the supply of fixed N to the mixed layer. The relative importance of nitrate from the subsurface, N2 fixation, terrestrial input and atmospheric deposition in supplying production is determined. Typically, 30-50% of the export flux in the subtropical water masses is sourced from N2 fixers and up to 75% within the Brazil Current. This finding suggests that diazotrophs may be abundant in the South West Atlantic providing a source of new N to this region. To assess the basin scale N-cycling processes, the deep water masses were analysed to reveal the origin and history of NO3-. Intermediate waters formed in the subantarctic are enriched in δ15NNO3 and δ18ONO3 from partial utilisation by algae. This enrichment in δ15NNO3 is not present in the subtropical North Atlantic or the return flow of the North Atlantic Deep Water (NADW), which decreases from ~5.9‰ in the newly formed intermediate waters to ~4.8‰ in the NADW at 40°S. The modification of isotopic signatures through the subtropical Atlantic can be calculated as an incorporation of 26-36 Tg N yr-1 of newly fixed N from an isotopic source of -1‰ (N2 fixation). The extent of N addition is higher than estimated rates of N loss within the Atlantic and surpasses the amount of N deficit supplied to the basin. Fixed N inputs and losses through the global ocean are investigated by the assessment of remineralised nitrate added to the ocean interior. A lower δ15N is observed in Atlantic remineralised nitrate in comparison to the Pacific. The relative importance of N2 fixation and pelagic denitrification within each ocean basin is quantified and through this approach, N2 fixation rates are estimated at 92-116 Tg N yr-1 in the Pacific and 24-32 Tg N yr-1 in the Indian Ocean. Combining Atlantic N2 fixation of ~32 Tg N yr-1 with Indo-Pacific, global N2 fixation rates can be estimated at 142-184 Tg N yr-1. The high inputs in the Pacific suggest that excess P is the dominant control on the success of N2 fixers. However, estimates of new N addition to the Atlantic indicate other mechanisms such as the recycling efficiency of P and supply of Fe to the surface ocean increase N2 fixation rates above this threshold. The organic matter supplied to sediments is principally derived from phytoplankton across the subtropical front. High organic content is associated with the productive Brazil-Malvinas Confluence region where a diverse supply of nutrients sustains elevated biomass. The Rio Plata outflow is characterised with high δ15NNO3 and δ15NPN, suggesting denitrification processes occur in the estuary. A low δ13C source associated with high Al concentrations is identified on the western slope, indicating a supply of terrestrial derived C to the deep ocean. The fractionation of C uptake by phytoplankton is assessed in subtropical and subantarctic waters. In the subantarctic, CO2[aq] and growth rates determine the extent of C isotope fractionation. In this region, low species diversity and a small range in cell size enable the fractionation from CO2[aq] and growth rate to be expressed in phytoplankton. In subtropical water masses a larger range of cell size is the principal determinant of C fractionation. Increased surface area to volume is the main mechanism for increasing C uptake, arguing against the use of δ13CPOC as a palaeoproxy. The low δ13CPOC and δ15NPN observed in the subtropics (from C fractionation and N2 fixation) contrast the heavier signatures in the subantarctic. These observations are propagated to the sediments, wherein organic matter shifts are determined by changes in the subtropical front over time. The results of this study have greatly improved knowledge of N and C cycling within the South Atlantic, providing new insight into the cycling of these two important elements in the surface and deep ocean, on a regional and global scale.
|
2 |
Spatial variations in soil and plant delta 13 C and delta 15 N values in a subtropical savanna: implications for vegetation change and nutrient dynamicsBai, E 15 May 2009 (has links)
Grass-dominated ecosystems in many regions around the world have experienced increased abundance of woody plants during the past 100 yrs. In the Rio Grande Plains of southern Texas, subtropical woodlands, dominated by C3 trees/shrubs capable of symbiotic N2-fixation, have become significant components of landscapes that were once dominated by C4 grasslands. Upland areas in this region now consist of small discrete clusters and large groves of woody vegetation embedded in a grassy matrix, while lower-lying portions of the landscape are dominated by closed-canopy woodlands. I used soil δ13C in conjunction with aerial photography and geostatistics to quantify landscape-scale vegetation dynamics in uplands of this savanna parkland. Spatial patterns of soil δ13C in grids and transects traversing woody patches indicated larger woody groves were formed from small discrete clusters of woody plants that spread laterally and eventually coalesced. Soil δ13C contour maps revealed some clusters are currently growing rapidly towards each other and might coalesce into groves in the near future, while some clusters remained relatively stable. Kriged maps of soil δ13C provided a strong spatial context for future studies aimed at understanding the functional consequences of this change in landscape structure. The dominant invading woody plant, honey mesquite (Prosopis glandulosa), was important in determining the spatial pattern of soil δ13C, supporting the hypothesis that they serve as recruitment foci and facilitate the establishment of subordinate woody species. Leaf δ15N values suggested that the N2-fixing mesquite influenced the N nutrition of nearby non-N2-fixing shrubs, thus, suggesting a mechanism by which mesquite could facilitate establishment of other woody species. In closed-canopy drainage woodlands, however, spatial patterns of soil δ13C were no longer controlled by the presence of mesquite, but by the amount of soil organic carbon and soil texture. The positive correlation between silt+clay and soil δ13C indicates that the formation of organomineral complexes and microaggregates may slow SOC turnover rates and favor the persistence of C4-derived SOC from the original grassland. This study enhances our understanding of potential patterns, causes and consequences of grassland to woodland conversions which are underway today in many grass-dominated ecosystems around the world.
|
3 |
Spatial variations in soil and plant delta 13 C and delta 15 N values in a subtropical savanna: implications for vegetation change and nutrient dynamicsBai, E 15 May 2009 (has links)
Grass-dominated ecosystems in many regions around the world have experienced increased abundance of woody plants during the past 100 yrs. In the Rio Grande Plains of southern Texas, subtropical woodlands, dominated by C3 trees/shrubs capable of symbiotic N2-fixation, have become significant components of landscapes that were once dominated by C4 grasslands. Upland areas in this region now consist of small discrete clusters and large groves of woody vegetation embedded in a grassy matrix, while lower-lying portions of the landscape are dominated by closed-canopy woodlands. I used soil δ13C in conjunction with aerial photography and geostatistics to quantify landscape-scale vegetation dynamics in uplands of this savanna parkland. Spatial patterns of soil δ13C in grids and transects traversing woody patches indicated larger woody groves were formed from small discrete clusters of woody plants that spread laterally and eventually coalesced. Soil δ13C contour maps revealed some clusters are currently growing rapidly towards each other and might coalesce into groves in the near future, while some clusters remained relatively stable. Kriged maps of soil δ13C provided a strong spatial context for future studies aimed at understanding the functional consequences of this change in landscape structure. The dominant invading woody plant, honey mesquite (Prosopis glandulosa), was important in determining the spatial pattern of soil δ13C, supporting the hypothesis that they serve as recruitment foci and facilitate the establishment of subordinate woody species. Leaf δ15N values suggested that the N2-fixing mesquite influenced the N nutrition of nearby non-N2-fixing shrubs, thus, suggesting a mechanism by which mesquite could facilitate establishment of other woody species. In closed-canopy drainage woodlands, however, spatial patterns of soil δ13C were no longer controlled by the presence of mesquite, but by the amount of soil organic carbon and soil texture. The positive correlation between silt+clay and soil δ13C indicates that the formation of organomineral complexes and microaggregates may slow SOC turnover rates and favor the persistence of C4-derived SOC from the original grassland. This study enhances our understanding of potential patterns, causes and consequences of grassland to woodland conversions which are underway today in many grass-dominated ecosystems around the world.
|
4 |
The role of infant life histories in the construction of identities in death: An incremental isotope study of dietary and physiological status among children afforded differential burialCraig-Atkins, E., Towers, Jacqueline R., Beaumont, Julia 21 August 2018 (has links)
Yes / Objectives
Isotope ratio analyses of dentine collagen were used to characterize short-term changes in
physiological status (both dietary status and biological stress) across the life course of
children afforded special funerary treatment.
Materials and Methods
Temporal sequences of δ15N and δ13C isotope profiles for incrementally-forming dentine
collagen were obtained from deciduous teeth of 86 children from four early-medieval English
cemeteries. Thirty-one were interred in child-specific burial clusters, and the remainder
alongside adults in other areas of the cemetery. Isotope profiles were categorized into four
distinct patterns of dietary and health status between the final prenatal months and death.
Results
Isotope profiles from individuals from the burial clusters were significantly less likely to reflect
weaning curves, suggesting distinctive breastfeeding and weaning experiences. This
relationship was not simply a factor of differential age at death between cohorts. There was
no association of burial location with stage of weaning at death, nor with isotopic evidence of
physiological stress at the end of life.
Discussion
This study is the first to identify a relationship between the extent of breastfeeding and the
provision of child-specific funerary rites. Limited breastfeeding may indicate the mother had
died during or soon after birth, or that either mother or child was unable to feed due to
illness. Children who were not breastfed will have experienced a significantly higher risk of
malnutrition, undernutrition and infection. These sickly and perhaps motherless children
received care to nourish them during early life, and were similarly provided with special
treatment in death. / University of Sheffield Early Career Researcher Scheme by a grant awarded to ECA in 2014-15.
|
5 |
Evaluating the Influence of Flooding on Aquatic Food-webs in Basins of the Peace-Athabasca Delta Using Isotopic TracersLyons, Stephanie 04 June 2010 (has links)
Periodic flooding has been widely believed to serve an important role in maintaining water levels and productivity of aquatic basins in floodplain landscapes. Here, I analyze four basins of contrasting flood frequencies (one through-flow, one pulse-flooded, two non-flooded) and two adjacent river sites in the PAD were sampled during the open-water season of 2007 and spring of 2008 to characterize linkages between hydrological processes (using O and H stable isotopes) and limnological conditions, and to assess how these linkages affect trophic interactions involving the aquatic flora and fauna (using C and N stable isotopes). The water balance and water chemistry of the through-flow basin was dominated at all times by the input of river water which reduced concentrations of nutrients and ions. In contrast, evaporation played an important role in the water balance and concentrated nutrients and ions in the non-flooded basins. Surprisingly, pulse-flood events had short-lived effects on the water balance and carbon stable isotopic signatures of biota. Hydrological and limnological conditions in the pulse-flooded basin were similar to those of the river water shortly after spring flooding. After flooding, evaporation caused rapid increase of δ18O of the water comparable to patterns observed in the non-flooded basins, but recovery of water chemistry variables was delayed. In the non-flooded and pulse-flooded basins, δ13CDIC declined due to atmospheric CO2 invasion under conditions of high primary productivity and pH that generated strong kinetic fractionation. This decline in δ13CDIC values produced the opposite effect compared to when photosynthesis occurs under non-limiting carbon conditions, as occurred in the through-flow basin. This feature provides important new knowledge to improve paleolimnological interpretation of δ13C values of organic matter in sediment cores to track past changes in flooding regimes. Importantly, this study shows that pulse floods exert short-lived transient (~1-2 months) effects of the water balance and carbon dynamics of aquatic food-webs and do not elevate aquatic production, but exert longer lasting (at least an entire open-water season) on water chemistry conditions. This contrasts with previous beliefs that the effects of pulse flooding are more profound and longer lasting.
|
6 |
Evaluating the Influence of Flooding on Aquatic Food-webs in Basins of the Peace-Athabasca Delta Using Isotopic TracersLyons, Stephanie 04 June 2010 (has links)
Periodic flooding has been widely believed to serve an important role in maintaining water levels and productivity of aquatic basins in floodplain landscapes. Here, I analyze four basins of contrasting flood frequencies (one through-flow, one pulse-flooded, two non-flooded) and two adjacent river sites in the PAD were sampled during the open-water season of 2007 and spring of 2008 to characterize linkages between hydrological processes (using O and H stable isotopes) and limnological conditions, and to assess how these linkages affect trophic interactions involving the aquatic flora and fauna (using C and N stable isotopes). The water balance and water chemistry of the through-flow basin was dominated at all times by the input of river water which reduced concentrations of nutrients and ions. In contrast, evaporation played an important role in the water balance and concentrated nutrients and ions in the non-flooded basins. Surprisingly, pulse-flood events had short-lived effects on the water balance and carbon stable isotopic signatures of biota. Hydrological and limnological conditions in the pulse-flooded basin were similar to those of the river water shortly after spring flooding. After flooding, evaporation caused rapid increase of δ18O of the water comparable to patterns observed in the non-flooded basins, but recovery of water chemistry variables was delayed. In the non-flooded and pulse-flooded basins, δ13CDIC declined due to atmospheric CO2 invasion under conditions of high primary productivity and pH that generated strong kinetic fractionation. This decline in δ13CDIC values produced the opposite effect compared to when photosynthesis occurs under non-limiting carbon conditions, as occurred in the through-flow basin. This feature provides important new knowledge to improve paleolimnological interpretation of δ13C values of organic matter in sediment cores to track past changes in flooding regimes. Importantly, this study shows that pulse floods exert short-lived transient (~1-2 months) effects of the water balance and carbon dynamics of aquatic food-webs and do not elevate aquatic production, but exert longer lasting (at least an entire open-water season) on water chemistry conditions. This contrasts with previous beliefs that the effects of pulse flooding are more profound and longer lasting.
|
7 |
Carbon and Nitrogen Stable Isotopic Patterns in South Florida Coastal Ecosystems: Modern and Paleoceanographic PerspectivesEvans, Samantha Lorraine 23 March 2008 (has links)
Long term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on coastal biogeochemistry. The present study sought to increase understanding of the coastal marine system of South Florida under modern conditions and through the anthropogenic changes in the last century, on scales ranging from individual nutrient cycle processes to seasonal patterns in organic material (OM) under varying hydrodynamic regime, to century scale analysis of sedimentary records. In all applications, carbon and nitrogen stable isotopic compositions of OM were examined as natural recorders of change and nutrient cycling in the coastal system. High spatial and temporal variability in stable isotopic compositions were observed on all time scales. During a transient phytoplankton bloom, ä15N values suggested nitrogen fixation as a nutrient source supporting enhanced productivity. Seasonally, particulate organic material (POM) from ten sites along the Florida Reef Tract and in Florida Bay demonstrated variable fluctuations dependent on hydrodynamic setting. Three separate intra-annual patterns were observed, yet statistical differences were observed between groupings of Florida Bay and Atlantic Ocean sites. The POM ä15N values ranged on a quarterly basis by 7‰, while ä13C varied by 22‰. From a sediment history perspective, four cores collected from Florida Bay further demonstrated the spatial and temporal variability of the system in isotopic composition of bulk OM over time. Source inputs of OM varied with location, with terrestrial inputs dominating proximal to Everglades freshwater discharge, seagrasses dominating in open estuary cores, and a marine mixture of phytoplankton and seagrass in a core from the boundary zone between Florida Bay and the Gulf of Mexico. Significant shifts in OM geochemistry were observed coincident with anthropogenic events of the 20th century, including railroad and road construction in the Florida Keys and Everglades, and also the extensive drainage changes in Everglades hydrology. The sediment record also preserved evidence of the major hurricanes of the last century, with excursions in geochemical composition coincident with Category 4-5 storms.
|
8 |
HYDROGEOCHEMISTRY AND WATER QUALITY OF ECHO HILLSKimball, Joel M. January 2008 (has links)
No description available.
|
9 |
Oral Histories: a simple method of assigning chronological age to isotopic values from human dentine collagenBeaumont, Julia, Montgomery, Janet 07 1900 (has links)
Yes / Background: stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in bone and dentine collagen have been used for over 30 years to estimate palaeodiet, subsistence strategy, breastfeeding duration and migration within burial populations. Recent developments in dentine microsampling allow improved temporal resolution for dietary patterns.
Aim: We propose a simple method which could be applied to human teeth to estimate chronological age represented by dentine microsamples in the direction of tooth growth, allowing comparison of dietary patterns between individuals and populations. The method is tested using profiles from permanent and deciduous teeth of two individuals.
Subjects and methods: using a diagrammatic representation of dentine development by approximate age for each human tooth (based on the Queen Mary University of London Atlas) (AlQahtani et al., 2010), we estimate the age represented by each dentine section. Two case studies are shown: comparison of M1 and M2 from a 19th century individual from London, England, and identification of an unknown tooth from an Iron Age female adult from Scotland.
Results and conclusions: The isotopic profiles demonstrate that variations in consecutively-forming teeth can be aligned using this method to extend the dietary history of an individual, or identify an unknown tooth by matching the profiles.
|
10 |
Nutrient subsidies in the coastal margin: implications for tree species richness and understory compositionMiller, Rebecca 01 May 2019 (has links)
The subsidized island biogeography hypothesis proposes that nutrient subsidies, those translocated from one ecosystem to another, can indirectly influence species richness on islands by directly increasing terrestrial productivity. However, the lack of a formal statistical model makes it difficult to assess the strength of the hypothesis. I created a formal subsidized island biogeography model to determine how nutrient subsidies, in addition to area and distance from mainland, influence tree species richness. My model showed that an increase in terrestrial nitrogen abundance results in a decrease of tree species richness. Soil and plant δ 15N values were higher than expected and it is likely that nutrient subsidies from the marine environment are responsible for 15N enrichment. However, the range of observed nitrogen abundance is similar to inland coastal-zone forests, indicating that islands are similarly nitrogen deprived and may not be receiving enough nutrient subsidies to alter productivity. Tree species decline may therefore be more strongly related to the environmental conditions leading to patterns of nitrogen abundance rather than the abundance of nitrogen itself.
Additionally, I proposed that bald eagles (Haliaeetus leucocephalus) are vectors of nutrient subsidies, depositing nutrient-rich guano at nest sites, which could alter soil chemistry and vegetation composition. In an exploratory study of seven nest sites, I found higher soil phosphorous at eagle nest sites relative to control sites (~ 33% higher). Phosphorous is a limiting nutrient in coastal temperate forests, additions help to alleviate chlorosis and slow growth especially when paired with nitrogen. Higher potassium concentration also occurred on eagle-inhabited islands but was not associated specifically with current nest sites, perhaps reflecting differential persistence of macronutrients in the soil. Despite expectations, soil δ 15N abundance was not statistically higher at eagle nest sites. Total soil nitrogen was also not statistically higher at eagle nest sites. There were no significant differences between vegetation composition at eagle nest sites and reference sites, but reference sites tended to be dominated by shrub species.
Additionally, I proposed that bald eagles (Haliaeetus leucocephalus) are vectors of nutrient subsidies, depositing nutrient-rich guano at nest sites, which could alter soil chemistry and vegetation composition. In an exploratory study of seven nest sites, I found higher soil phosphorous at eagle nest sites relative to control sites (~ 33% higher). Phosphorous is a limiting nutrient in coastal temperate forests, additions help to alleviate chlorosis and slow growth especially when paired with nitrogen. Higher potassium concentration also occurred on eagle-inhabited islands but was not associated specifically with current nest sites, perhaps reflecting differential persistence of macronutrients in the soil. I expected to observe elevated nitrogen isotope signatures (δ 15N) given bald eagles’ position in the trophic web and the potential for volatilization of guano but soil δ 15N abundance was not statistically higher at eagle nest sites. Total soil nitrogen was also not statistically higher at eagle nest sites. There were no significant differences between vegetation composition at eagle nest sites and reference sites, but reference sites tended to be dominated by shrub species / Graduate
|
Page generated in 0.0491 seconds