• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 17
  • 15
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 2
  • 1
  • Tagged with
  • 177
  • 177
  • 42
  • 32
  • 29
  • 23
  • 23
  • 21
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Microbiome Metabolism in the Rumen of Bovine Grazing Toxic Tall Fescue and in Stored Dairy Manure

Khairunisa, Bela Haifa 28 June 2023 (has links)
Sustainable farming is an integrated practice of crop and livestock production system (integrated crop-livestock system; ICLS) that aims to reduce the environmental impacts of agricultural practices while maintaining the productivity and profitability. The use of one step's byproducts by another is a crucial component of this practice. The continuity and effectiveness of sustainable farming greatly rely on deep understanding of each component and good management strategy. One essential aspect involved in all farming components is the role of microorganisms in mediating the biological processes therein. Thus, understanding the composition and activities of these communities would open up ways to engineer them and optimize the respective processes for better sustainable farming practices. The research presented in this dissertation aimed to characterize the microbial metabolism involved in the ICLS with a broader goal of manipulating these systems to improve sustainable agriculture. We focused on two systems that are widely used in the United States, and employed the analysis of 16S rRNA-V4 element for this purpose. In our first system, we characterized the rumen microbiomes of beef cattle alternately grazing nontoxic MaxQ and toxic KY-31 tall fescue pasture, to understand how these cultivars shape the rumen microbiome and identify microbial species potentially capable of degrading ergot alkaloids for better feed utilization. We found that KY-31 grazing remodeled the rumen microbiome substantially at the cellulolytic and saccharolytic guilds. It suppressed the abundances of Fibrobacter, a major ruminal cellulolytic bacterium, as well as those of Pseudobutyrivibrio and Butyrivibrio, and these losses were compensated by increased occurrences of Eubacterium species. Parts of these new communities lingered once developed, and a different guild composition surfaced upon transfer to MaxQ. We also discovered that most of the observations were not evident at the whole microbiome levels but was identified by analyzing the sessile and planktonic fractions separately. Thus, it showcased the need for analyzing sessile and planktonic segments separately while interrogating a heterogenous microbiome. Finally, we identified several potential ergovaline degrading bacteria such as Paraprevotella and Coprococcus. In our second system, we studied the microbiome composition and associated transformation pathways mediating nitrogen loss in two dairy manure storage systems, the clay-lined Earthen Pit (EP) and aboveground concrete storage tank (CS) on two commercial dairy farms, to develop strategies to minimize these losses. We first developed a catalog of the archaea and bacteria that were present therein based on the 16S rRNA-V4 amplicons from manure samples collected from several locations and depths of the storages. Then, we inferred the respective metabolic capabilities via PICRUSt2 and literature curation, and developed schemes for nitrogen and carbon transformation pathways operating at various locations of EP and CS. Our results showed that the stored manure microbiome composition was more complex and exhibited more location-to-location variation in EP compared to CS. Further, the inlet and a location with hard surface crust in EP had unique consortia. With regards to nitrogen transformation, the microbiomes in both storages had the potential to generate ammonia but lacked the organisms for oxidizing it to nitrate and further to gaseous compounds such as anammox and autotrophic nitrifiers. However, microbial conversion of nitrate to gaseous N2, NO, and N2O via denitrification and to stable ammonia via dissimilatory nitrite reduction (DNRA) seemed possible. Minor quantity of nitrate was present in manure, potentially originating from oxidative processes occurring on the barn floor. Higher prevalence of nitrate-transforming microbes at the near-surface locations and all depths of the inlet were found as a result of this instance. These findings suggested that ammonia oxidation to nitrate started on the barn floor and as manure is being stored in EP and CS, nitrate was lost to the environment via denitrification. For carbon transformation, hydrogenotrophic Methanocorpusculum species were the primary methane producers, and it exhibited higher abundance in EP. / Doctor of Philosophy / Sustainable farming is an integrated practice of crop and livestock production systems that aims to reduce the environmental impacts of agricultural practices while maintaining the productivity and profitability. The use of one step's byproducts by another such as the utilization of arable land to grow forages for livestock grazing or the use of manure as organic nitrogen amendments for crops is a crucial component of this practice. The continuity and effectiveness of sustainable farming greatly rely on deep understanding of each component and good management strategy. One essential aspect involved in all farming components is the role of microorganisms in mediating the biological processes therein. Thus, understanding the composition and activities of these communities would open up ways to engineer them and optimize the respective processes for a better sustainable farming practice. The research presented in this dissertation aimed to characterize the microbial metabolism involved in the integrated crop-livestock system with a broader goal of manipulating these to improve sustainable agriculture. We focused on two systems that are widely used in the United States, and employed bioinformatic analysis of a genetic marker for this purpose. In our first system, we characterized the rumen microbiomes of beef cattle grazing alternately on KY-31 tall fescue, a major grass used in Virginia that carry a toxin-producing fungi, and nontoxic MaxQ tall fescue pasture, to understand how these cultivars shape the rumen microbiome and identify potential microbial species capable of degrading the toxin for better feed utilization. We found that KY-31 grazing remodeled the rumen microbiome substantially, especially affecting microbes responsible for degrading cellulose and starch. Some of these communities lingered once developed, and a different microbial population surfaced upon transfer to MaxQ. Several potential toxin-degrading bacteria were also identified. In our second system, we studied the microbiome composition and associated transformation pathways mediating nitrogen loss in two dairy manure storage systems, the clay-lined Earthen Pit (EP) and aboveground concrete storage tank (CS), to develop strategies to minimize these losses. We first develop a catalog of the archaea and bacteria that were present in the manure samples collected from several locations and depths of the storages based on a genetic marker. Then, we inferred the respective metabolic capabilities and developed schemes for nitrogen and carbon transformation pathways operating at various locations of EP and CS. Our results showed that the stored manure microbiome exhibited more location-to-location variation in EP compared to CS. Oxygen exposure, continuous addition of fresh manure, and the presence of crust at the storage surface gave rise to these unique populations. With regards to nitrogen transformation, the microbiomes in both storages had the potential to generate ammonia but lacked the organisms for oxidizing it to nitrate and further to gaseous compounds. However, microbial conversion of nitrate to gaseous N2, NO, and N2O seemed possible. These observations showcased that ammonia is stable during storage. Nitrate, on the other hand, can be converted into volatile nitrogen compounds via various processes. Thus, it is imperative to limit the level of nitrate in manure prior to placement in the storage, which is potentially originating from oxidative processes occurring on the barn floor.
112

Dissolved nitrogen dynamics in an ombrotrophic bog

Rattle, Jean. January 2006 (has links)
No description available.
113

A computer simulation model for manurial nitrogen management : environmental aspects (MANIMEA)

Hengnirun, Somgiat. January 1996 (has links)
No description available.
114

A circular production of fish and vegetables in Guatemala : An in-depth analysis of the nitrogen cycle in the Maya Chay aquaponic systems / En cirkulär produktion av fisk och grönsaker i Guatemala : En fördjupad analys av kvävecykeln i Maya Chay akvaponiska system

Björn, Erik January 2018 (has links)
This study was done with the aim of deepening the understanding of the Maya Chay aquaponic systems. To meet the aim, a literature study on aquaponics, with an emphasis on the nitrogen metabolism in such systems, was conducted. Furthermore, a deep investigation of the specific Maya Chay systems was made to understand how these systems might be different from the general aquaponic designs. Finally, two nitrogen balances were developed with the purpose of examining the dynamics of the nitrogen transformations in two Maya Chay aquaponic systems. The measurements for the nitrogen balances was made between Mars 2017 to July 2017, and the model for the nitrogen balances evaluated the amount of nitrogen as: i) nitrogen input to the system through the feed, ii) nitrogen assimilated by the fish and the plants, iii) nitrogen accumulated in the sludge, and iv) nitrogen lost to the atmosphere through denitrification and similar processes such as anammox. The resulting nitrogen balances showed some interesting differences in the dynamics of nitrogen distribution. In the smaller Maya Chay XS system in Antigua, only 36 % of the nitrogen input was assimilated by the fish (30 %) and the plants (6 %) and 64 % of the nitrogen input could be regarded as lost, either to the atmosphere (46 %) or in the sludge (18 %). The other nitrogen balance showed that the distribution of nitrogen in the Maya Chay S system in Chinautla is much more efficient in taking care of the nitrogen input. In this system 70 % was assimilated by the fish (33 %) and the vegetables (37 %) and the remaining 30 % was lost, either to the atmosphere (14 %) or in the sludge (16 %). The nitrogen balances also showed that both systems are almost equally efficient in terms of nitrogen assimilation by the fish, and that the big differences lie in the rate of nitrogen assimilation by the plants (6 % vs. 30 %) and in the nitrogen loss to the atmosphere (46 % vs. 14 %). A likely explanation for these differences is the difference in design of the vegetable beds, where the less efficient system in Antigua has a large surface area for the vegetable bed, but only a small portion of this could be utilized for vegetable growth. Furthermore, a consequence of the larger surface is a larger anoxic zone in the bottom of the vegetable bed, which promotes the growth of denitrifying and anammox bacteria. These kinds of bacteria convert the dissolved ammonia, nitrite and nitrate to gas forms of nitrogen, such as nitrogen gas and nitrous oxide and thus nitrogen is lost from the system to the atmosphere. Finally, this study also showed a great difference in the ratio of vegetable to fish production between the systems, where the ratio was 0.43 in Antigua and 2.7 in Chinautla. This ratio further indicates the difference in design between the systems, especially regarding the vegetable beds, has an impact on how well they perform, both in terms in economic and productivity terms, but also in terms of the release of greenhouse gases (nitrous oxide). It can therefore be concluded that the original design of the Maya Chay system (i.e. the Chinautla system) is the preferable one. Even though the accuracy of the measurements in the experiments could be improved for future studies, this study has demonstrated the value of making nitrogen balances for aquaponic systems. Nitrogen balances increase the knowledge of the performance of the system and they increase the understanding of the dynamics of nitrogen transformations that takes place in the system. This knowledge can then be utilized to adjust the design and/or verify if either the aquaculture or hydroponic system is properly designed. / Den här studien gjordes med syftet att fördjupa förståelsen kring Maya Chay akvaponiska system. För att uppnå syftet, utfördes en litteraturstudie som fokuserade på metabolismen av kväve i sådana system. Vidare undersöktes specifika Maya Chay system för att förstå hur dessa system skulle kunna skilja sig från den generella akvaponiska designen. Slutligen utvecklades två kvävebalanser i syfte att utforska dynamiken i de kväveomvandlingar som sker i två Maya Chay akvaponiska system. Mätningarna för kvävebalanserna gjordes i perioden mars 2017 till juli 2017, och modellen för kvävebalanserna utvärderade mängden kväve som: i) kväve som tillförts till systemet genom fodret, ii) kväve som assimilerats av fiskarna och växterna, iii) kväve som ackumulerats i slammet, och iv) kväve som gått förlorat till atmosfären genom denitrifikation och liknande processer så som anammox. Resultaten från kvävebalanserna visade intressanta skillnader kring dynamiken av kvävefördelningen. I det mindre Maya Chay XS systemet i Antigua, assimilerades endast 36 % av kvävet av fiskarna (30 %) och växterna (6 %) och 64 % av kvävet ansågs som förluster, antingen till atmosfären (46 %) eller genom slammet (18 %). Den andra kvävebalansen visade att fördelningen av kväve i Maya Chay S systemet i Chinautla är mycket mer effektivt gällande tillvaratagandet av tillfört kväve. I detta system assimilerades 70 % av fiskarna (33 %) och av växterna (37 %) och de resterande 30 % gick förlorat, antingen till atmosfären (14 %) eller i slammet (16 %). Kvävebalanserna visade även att bägge systemen är mer eller mindre likvärdiga gällande assimilering av kväve från fiskarna, och att den stora skillnaden mellan systemen ligger i hur mycket kväve som assimilerats av växterna (6 % vs. 37 %) samt hur mycket kväve som gått förlorat till atmosfären (46 % vs. 14 %). En sannolik förklaring till dessa skillnader är skillnaden i designen av växtbäddarna för två systemen, där det mindre effektiva systemet i Antigua har större area för växtbädden, men endast en mindre del av denna kunde nyttjas för odling av grönsaker. Som konsekvens av den större arean av växtbädden är en större volym syrefattigt vatten i botten av växtbädden, vilket verkar för tillväxt av denitrifierande och anammoxa bakterier. Dessa typer av bakterier omvandlar den upplösta ammoniaken, nitriten samt nitratet till kväveföreningar i gasform, till exempel kvävgas och lustgas och därav går kvävet förlorat till atmosfären. Slutligen visade den här studien stora skillnader i förhållandet mellan växt- och fisk-produktion mellan de två systemen, där förhållandet var 0.43 i Antigua och 2.7 i Chinautla. Skillnaden mellan de två olika förhållandena är ytterligare en indikation till att skillnaden i designen mellan systemen, speciellt med avseende på växtbäddarna, har en effekt på hur väl systemen presterar, både i termer som ekonomi och produktivitet, men också i termer som utsläpp av växthusgaser (lustgas). Därför kan slutsatsen dras att den ursprungliga designen av Maya Chay systemen (det vill säga systemet i Chinautla) är att föredra. Även om noggrannheten i mätningarna i detta experiment skulle kunna förbättras i framtida experiment, så visar denna studie värdet av att utföra kvävebalanser för akvaponiska system. Kvävebalanserna ökar kunskapen om hur väl systemen fungerar och dom ökar kunskapen kring dynamiken i kväveomvandlingarna som sker i systemen. Denna kunskap kan sedan utnyttjas för att justera designen av systemen och/eller verifiera om antingen vattenbruksdelen eller hydroponidelen i systemet är feldimensionerad.
115

Nitrogen cycling in the northern hardwood forest: soil, plant, and atmospheric processes

Nave, Lucas Emil 10 December 2007 (has links)
No description available.
116

A study of corn production and nitrogen cycling in the soil-plant system

Liang, Baochang January 1992 (has links)
No description available.
117

Determination of the denitrification capacity of unconsolidated rock aquifers using 15N tracer experiments at groundwater monitoring wells - development of a new method to assess actual and future denitrification in aquifers

Eschenbach, Wolfram 28 January 2014 (has links)
No description available.
118

Species-specific Effects on the Carbon and Nitrogen Cycle in Temperate Decidous Forest

Sommer, Janine 02 December 2016 (has links)
Diverse Studien deuten darauf hin, daß das wichtigste Instrumentarium für die Wirkung der Artenvielfalt auf die Funktionen eines Ökosystems die Nischen-Komplementarität ist, aber auch daß es sehr schwierig ist diese wechselseitige Ergänzung und ihre wesentlichen Mechanismen zwischen den Pflanzenarten zu verstehen. Der Grundgedanke der Nischendifferenzierung ist, daß individuelle Arten mit sich ergänzenden Nischen die in einem Ökosystem vorhandenen Ressourcen besser nutzen, um eine höhere primäre Produktivität zu erreichen als in Monokulturen. Darum haben wir uns auf die Unterschiede in der ober- und unterirdischen Verteilung von Kohlenstoff (C) und Stickstoff (N) zwischen Buche und Esche als ein Mechanismus der Nischendifferenzierung in Wäldern konzentriert. Die artenspezifische Rhizodeposition und der Stickstoffernährungszustand und die damit verbundene mikrobielle Aktivität spielen genauso wie die beteiligte Bodenfauna eine erhebliche Rolle im C und N Kreislauf des Baum-Boden Systems. Das Interesse der Forschungsvorhaben in den letzten Jahrzehnten bezog sich auf Laubwälder als wichtige Speicher für atmosphärisches CO2 und Baumarten die in der Lage sind diese Funktion zu verbessern. Derzeit haben wir umfassendere Kenntnisse über die Bedeutung von Streu von einzelnen Baumarten auf die Kohlenstoff- und Nährstoffdynamik im Laubwald als über wurzelbezogene Effekte. Wurzelbürtiger C und N werden in den Boden als Exsudate, Verlust durch Auslaufen oder zerfallendes Wurzelmaterial abgegeben. Hier regen sie einerseits mikrobielles Wachstum und Aktivität in der Rhizosphäre an und kontrollieren andererseits den C und N Umsatz in der Nahrungskette im Boden. Dennoch fehlt uns das Verständnis wie sich spezielle Arten auf die Menge des pflanzenbürtigen C und N auswirken und somit die Aktivität von Bodenorganismen in Laubwäldern der gemäßigten Zone beeinflussen. Aus diesem Grund erforscht diese Dissertation die Effekte von Buche und Esche auf den C und N Kreislauf und seine Dynamik im Baum und weiterhin den Zusammenhang zwischen Nährstoffen und Mikroben, mit Fokus auf Mycorrhiza und Bodenfauna. Die stabile Isotopenanalyse wurde vermehrt eingesetzt um C und N Nährstoffkreisläufe und ihre Struktur, Mengen und die zugrunde liegenden Mechanismen zu untersuchen, und sogar um Prozesse in natürlichen Ökosystemen im Fließgleichgewicht verfolgen zu können. Trotzdem ist diese Methode bisher noch nicht angewandt worden um die artspezifische C und N Dynamik in Laubwäldern in allen wesentlichen Kompartimenten ober- und unterirdisch zu beschreiben. Deshalb koordinierte ich ein Pulse Markierungsexperiment im National Park Hainich, bei dem 13CO2 und Ca(15NO3)2 auf das Laubdach von Buche und Esche aufgebracht wurde, um die C und N Verteilung von oben bis in den Boden genauer untersuchen zu können. Die Aufnahme und Verteilung von C und N in den verschieden Baumkompartimenten und der wurzelbürtige C und N in der Nahrungskette im Boden wurden 60 Tage lang untersucht. Buche assimilierte zweimal so viel 13CO2 wie Esche (20 bzw. 9%) und transportierte das aufgenommene C und N schneller in den Boden als Esche. Die von den Blättern aufgenommene Menge 15N (45%) war ähnlich in beiden Baumarten. Esche jedoch akkumuliert bevorzugt 15N und 13C in der Wurzel während Buche gibt mehr von dem anfangs assimilierten 13C und aufgenommenen 15N via Rhizodeposition an den Boden abgibt, welcher dann anschließend in der mikrobiellen Biomasse wieder gefunden werden konnte. Deshalb wurde auch mehr wurzelbürtiger N in die Bodenfauna unter Buche eingebaut als unter Esche, somit ist der Eintrag von Wurzelstickstoff in die Bodenfauna baumartspezifisch. Aufgrund der Tatsache, daß pflanzenbürtiger C und N in den Mesofauna Zersetzern wiedergefunden werden konnte, ist nicht nur bewiesen worden, daß ein C Transport von den Pilzen und der mikrobiellen Biomasse zu der nächst höheren trophischen Ebene stattfindet, sondern auch, daß die artspezifische Wurzel N Deposition einen Einfluss auf das Nahrungsnetz im Boden hat. Zusätzlich wurde die Tracer Wiederfindung im Boden und in der mikrobiellen Biomasse dreidimensional (vertikal und horizontal) bestimmt; diese zeigte horizontal eine homogene Verteilung bis zu 55 cm vom Stamm aber vertikal eine artspezifische Verteilung. Die Verteilung von13C und 15N war mit zunehmender Bodentiefe (0 - 30 cm) unter Buche abnehmend, doch Esche gab mehr 13C in die Tiefe von 10-20 cm in den Boden ab. Diese Ergebnisse reflektieren die Unterschiede in der Wurzelmorphologie von Buche und Esche und zeigten nochmals den Baumarteneffekt auf den C und N Kreislauf im Boden. Neben dem hauptsächlichen Feldversuch wurde ein Laborversuch durchgeführt. Dieses Experiment adressierte besonders den Baumarteneffekt auf die dazugehörigen mikrobiellen Gruppen, welche mit der 13CO2 Isotopenmarkierungsmethode an 1m hohen Buchen und Eschen identifiziert wurden. Die 13C Aufnahme in die Phospholipid Fettsäuen (PLFA) reflektierte, daß die Verwendung der Rhizodeposite von einzelnen mikrobiellen Gruppen stark von der Baumart beeinflusst wurde, obwohl die Struktur der mikrobiellen Gemeinschaft sich zwischen den untersuchten Baumarten nicht unterschied. Saprotrophe- und Ektomycorrhiza - Pilze von Buche und Esche – aber auch Arbuskuläre Mycorrhiza Pilze und gramnegative Bakterien unter der Esche – zeigten den Hauptteil des in den PLFA wieder gefundenen 13C. Von der pilzlichen PLFA C wurden innerhalb von fünf Tagen 30% durch das 13C aus der Rhizodeposition der Buche ersetzt und 10% aus der Rhizodeposition der Esche, freie assoziierte Bakterien hingegen tauschten nur max. 3% ihrer Membranfette aus. Das deutet darauf hin, dass die direkte Verteilung von C via Mycorrhiza-Symbiose sowohl die unterirdische Verteilung des C in Laubwäldern als auch die C Versorgung von Pilzen dominiert. Weiterhin hat sich die PLFA als eine geeignete Methode erwiesen, um Unterschiede im Kohlenstoffkreislauf von den Bäumen in die verschiedenen Mycorrhizaarten feststellen zu können. Die festgestellten Unterschiede in der 13C Aufnahme und Umsetzung von der ganzen Myco-Rhizosphäre beweisen auch, dass der Kohlenstoffkreislauf im Boden erheblich von der artspezifischen Rhizodeposition und den Verbindungen der Wurzel mit anderen Organismen abhängt. Beim Rezensieren der Rolle von Mycorrhiza in verschieden natürlichen Ökosystemen und der Mycorrhizaarten kam zum Vorschein, dass vermutlich die hohe C Verteilung zu den Pilzpartnern hauptsächlich durch den Phosphorkreislauf gesteuert wird, z.B. als Austausch von C gegen P (Phosphor). Demnach ist der Einfluss der Mycorrhizierung auf den Phosphorkreislauf ein Thema, welches weltweite Relevanz hat und nach mehr Aufmerksamkeit in der zukünftigen Forschung verlangt. Ich habe zwei 15N Pulsmarkierungsexperimente am Blatt durchgeführt um 15N in den unterirdischen Prozessen nach der Rhizodeposition verfolgen zu können. Dadurch konnte man diese Markierungsmethoden für die Produktion von hoch angereicherter Streu für weitere Zersetzungsstudien evaluieren. 15NH4Cl hatte eine höhere Aufnahme und eine homogenere Verteilung zwischen den Baum Kompartimenten in Buche und Esche zur Folge und deswegen ist sie geeigneter für Allokations-Studien. Beide 15N Tracer erlauben in situ Langzeit-Markierungsexperimente der N Rhizodeposition und Allokation im Boden, da sie keinen Schaden an den Blättern hinterlassen. Dennoch ist die Markierung der Blätter mit Ca(15NO3)2 im Vergleich zu 15NH4Cl die bessere Wahl, um hoch 15N angereichertes Blattstreu zu produzieren, da mehr des aufgenommenen 15N in den Blättern verbleibt für langzeitige Streu-Zersetzungs- und Umsatzstudien. Die artspezifische pflanzenbürtige C Allokation und vielleicht auch N Allokation impliziert einen Anstieg der mikrobiellen Aktivität. Das kann vermutlich zu einer höheren unterirdischen N Verfügbarkeit für Pflanzen führen und eine Erklärung für den positiven Effekt der Planzendiversität auf die Produktivität des Waldbestandes aufgrund von Nischen Partitionierung sein. Diese Arten – Nischen Partitionierung zwischen Bäumen könnte nicht nur die Produktivität in natürlichen Ökosystemen erhöhen, sondern auch die Produktivität von auf Holz basierenden Landnutzungssystemen. Deshalb wurde der Stickstoffkreislauf von einer Kurzumtriebsplantage mit einem Markierungsexperiment mit 15NH4NO3 und NH415NO3 an Weiden- und Pappelstecklingen untersucht. Das Experiment untersuchte die N Aufnahme und Allokation im Baum – Boden System von unten, mit Fokus auf die Biomasse und insbesondere auf die Holzproduktion in der anfänglichen Wachstumsphase. Die Weide zeigte keine Präferenz zwischen NH4+ und NO3ˉ, aber es konnte mehr NH4+ als bei der Pappel in den Baumkompartimenten gefunden werden. Die Pappel hingegen produzierte mehr Biomasse in der anfänglichen Wachstumsphase, dennoch ist die Weide möglicherweise die bessere Wahl wenn Nitratüberschuss auf Agrarflächen schnell in Biomasse umgewandelt werden soll. Weitere Experimente, die eine Verknüpfung zwischen pflanzenbürtigem N Eintrag als treibende Kraft für die Zersetzungsaktivität und die Stickstoffaufnahme vom Bodennahrungsnetz und der wachsenden Nachfrage nach Holz untersuchen, sind erforderlich, um die Hauptmechanismen in der Regulation des Stickstoffhaushaltes zu verstehen. Zusammenfassend vertieft diese Dissertation unser Verständnis über Auswirkungen einzelner Arten auf den C und N Kreislauf im Boden. Sie zeigt, dass die Rhizodeposition, die einem baumartspezifischen Einfluss auf den C und N Kreislauf unterliegt, im Besonderen die Aktivität bestimmter mikrobieller und pilzlicher Gruppen verstärkt. Die untersuchten Markierungsmethoden bedürfen weiterer Anwendung in anderen Waldökosystemen und Landnutzungssystemen wie z.B. dem Agroforest.
119

Ciclagem do nitrogênio em uma cronosequência formada por florestas restauradas e floresta natural / Nitrogen cycling in a chronosequence formed by restored forests and a natural forest

Amazonas, Nino Tavares 11 March 2010 (has links)
A recuperação de funções e processos ecossistêmicos, entre outros atributos, é um dos indicadores mais importantes no processo de retorno de um ecossistema à sua trajetória histórica. A ciclagem de nutrientes é um atributo fundamental do ecossistema, e relaciona-se diretamente à regulação do funcionamento e do desenvolvimento dos ecossistemas e inclui, em um modelo geral, as entradas de nutrientes, as transferências internas entre plantas e solo e as saídas do sistema. A compreensão das mudanças nos processos biogeoquímicos durante a sucessão secundária em áreas em restauração ecológica ainda é incipiente, principalmente em áreas de florestas tropicais. Esse estudo tem por objetivo elucidar a dinâmica do nitrogênio ao longo do processo de restauração ecológica em áreas reflorestadas com espécies nativas da Mata Atlântica. A questão norteadora deste estudo é a seguinte: A restauração florestal com alta diversidade de espécies e predominância de espécies arbóreas nativas regionais restaura a dinâmica original do nitrogênio? Esse estudo visa investigar o funcionamento da ciclagem de nutrientes, com foco no nitrogênio, que é um elemento limitante à sucessão secundária, especialmente em florestas tropicais. Para tal, alguns indicadores da ciclagem do nitrogênio foram mensurados em uma cronosequência florestal formada por uma floresta natural preservada e florestas restauradas de diferentes idades (21 e 52 anos) reflorestadas com alta diversidade de espécies e predominância de nativas regionais. Os indicadores utilizados foram: 15N e teor de N da vegetação, serrapilheira e solo; razão N:P da vegetação e da serrapilheira; taxas líquidas de mineralização e nitrificação; teor de amônio, nitrato, N mineral e razão nitrato:amônio. As florestas foram amostradas entre agosto de 2008 e abril de 2009, nas seguintes estações: seca, transição entre seca e chuvosa, chuvosa, e transição entre chuvosa e seca. Foram encontrados padrões claros de mudanças na ciclagem do N ao longo da cronosequência estudada, incluindo diferenças nos valores de 15N foliar, teor de N, razão N:P, N mineral e taxas líquidas de mineralização e nitrificação, caracterizadas por um aumento de valores médios dessas variáveis ao longo da cronosequência. Os resultados encontrados sugerem que as florestas em processo de restauração, mesmo a de 52 anos, ainda não possuem uma ciclagem de N característica de uma floresta madura e, portanto, a recuperação da ciclagem de N ainda não foi completamente atingida. Entretanto, é possível afirmar que as florestas em processo de restauração estudadas estão seguindo uma trajetória de desenvolvimento caracterizada por uma ciclagem de N cada vez mais parecida com a de uma floresta natural madura, como a da floresta natural madura utilizada como referência. Através dos modelos de restauração utilizados para as florestas da cronosequência estudada, os processos da ciclagem do N são recuperados à medida que a floresta desenvolve-se, com uma clara tendência de mudança na economia de N para economia de P típica de florestas tropicais maduras. / The recuperation of ecosystem processes and functions, among other attributes, is one of the most important indicators in the process of return of an ecosystem to its historic trajectory. Nutrient cycling is a fundamental ecosystem attribute, and relates directly to regulation of functioning and development of ecosystems and includes, in a general model, nutrients entering, being transferred internally between plants and soil, end leaving the system. The comprehension of changes in biogeochemical processes during secondary succession in areas in ecological restoration is still incipient, mainly in tropical forests. This study aims to elucidate nitrogen dynamics along the process of ecological restoration in areas reforested with Atlantic Forest native species. The question driving this study is: Does ecological restoration with high diversity of species and predominance of regional native tree species restore nitrogen original dynamics? This research investigated nutrients cycling functioning, focusing on nitrogen, which is a limiting nutrient in secondary succession, particularly in tropical forests. In order to do so, some indicators of nutrient cycling were assessed in a forest chronosequence formed by a preserved natural forest and restored forests of different ages (21 and 52 years) reforested using high species diversity and predominance of regional native species. The indicators used were: 15N and N content in green foliage, litter and soil; N:P ratio of green foliage and litter; net mineralization and net nitrification rates; content of ammonium, nitrate, inorganic N, and nitrate:ammonium ratio. The forests were sampled between August 2008 and April 2009, in the following seasons: dry, dry-rainy transition, rainy, rainy-dry transition. Clear patterns of change in the N cycling along the studied chronosequence were found, including differences in green foliage 15N values, N content, N:P ratio, inorganic N and net mineralization and nitrification rates, characterized by an increase in the mean values of these variables along the chronosequence. The results found suggest that the forests in restoration process, even the 52 years old one, still do not present a N cycling characteristic of a mature forest and, therefore, the recuperation of the N cycling was not completely reached yet. However, it is possible to state that the forests in restoration process studied here are following a development trajectory characterized by a N cycling progressively more similar to what is common to a mature native forest, as the one used as the reference ecosystem in this study. Through the restoration models used for the forests studied, the N cycle processes are recovered as the forests develop, as they present a clear tendency of changing from N economy to P economy, typical to mature tropical forests.
120

Analysis of performances of crucifers-legumes cover crop mixtures to provide multiple-ecosystem services / Analyse des performances des mélanges crucifères-légumineuses pour produire de multiples services écosystémiques en culture intermédiaire

Couedel, Antoine 31 October 2018 (has links)
Les cultures intermédiaires multi-services (CIMS) implantées en interculture entre deux cultures de rente permettent de produire de nombreux services écosystémiques. Parmi les familles d’espèces utilisées comme CIMS, les crucifères réduisent efficacement la lixiviation de nitrate et de sulfate en captant l’azote (N) et le soufre (S) minéral du sol (services de piège à N et à S). Les crucifères ont aussi la capacité de contrôler les pathogènes via des composés biocides issus de l’hydrolyse de métabolites secondaires appelés glucosinolates (GSL). L’objectif de nos travaux de recherche est d’évaluer les performances en termes de services écosystémiques liés à l’azote, au soufre et au potentiel de bio-contrôle d’une grande diversité de mélanges bispécifiques de crucifères et de légumineuses en comparaison aux CIMS pures. Nous avons réalisé des expérimentations sur 2 sites contrastés (région de Toulouse et Orléans, France) et sur 2 années pour tester les performances de mélanges crucifère-légumineuse en comparaison aux espèces pures. Les espèces testées sont i) pour les crucifères : colza, moutarde blanche, moutarde brune, moutarde éthiopienne, navet, navette, radis, roquette, et ii) pour les légumineuses : trèfle Egyptien, trèfle incarnat, vesce commune, vesce pourpre, vesce velue, pois, soja, féverole et lupin blanc. Nos travaux de recherche montrent que les mélanges crucifère-légumineuse peuvent produire simultanément divers services écosystémiques avec un haut niveau d’expression, allant de 2/3 (production de GSL, engrais vert à N et S), à quasiment 100% (piège à N et S) du service produit par la famille d’espèce pure la plus performante. La concentration et les types de GSL ne changeant pas en mélanges, les interactions des crucifères avec leurs pathogènes restent identiques. Via une revue de littérature nous concluons également que le service de bio-contrôle des cultures pures de crucifères peut être maintenu en mélanges crucifère-légumineuse sur une grande diversité de pathogènes et adventices tout en réduisant les potentiels dis-services sur les auxiliaires et sur le cycle de l’azote. / Multi-services cover crops (MSCC) grown during fallow period between two cash crops provide various ecosystem services. Among species used as MSCC, crucifers can efficiently prevent nitrate and sulphate leaching by catching residual soil mineral nitrogen (N) and sulphur (S) afterthe preceding cash crop (N and S catch crop services). Crucifers also have a unique capacity to suppress pathogens due to the biocidal hydrolysis products of endogenous secondary metabolites called glucosinolates (GSL). The aim of our study was to assess the provision of various ecosystem services linked to N, S cycles and biocontrol potential for a wide range of bispecific crucifer-legume mixtures in comparison to sole cover crops of legume and crucifer. We carried out experiments in 2 contrasted sites (Toulouse and Orléans regions, France) during 2 years in order to assess these services and the compatibility of various bi-specific crucifer-legume mixtures. We tested a great diversity of species, such as i) crucifers : rape, white mustard, Indian mustard, Ethiopian mustard, turnip, turnip rape, radish and rocket, and ii) legumes: Egyptian clover, crimson clover, common vetch, purple vetch, hairy vetch, pea, soya bean, faba bean, and white lupin. Our study demonstrated that crucifer-legume mixtures can provide and mutualize various ecosystem services by reaching from 2 thirds (GSL production, S and N green manure) to the same level ofservice (N and S catch crop) than the best sole family of species. GSL profile and concentration did not change in mixtures meaning that crucifer-pests interactions were identical. Through a literature review we also illustrated that biocontrol services of crucifers could be largely maintained in crucifer-legume mixtures for a wide range of pathogens and weeds while reducing potential disservices on beneficials and increasing N related service

Page generated in 0.5522 seconds