• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The nitrogen distribution in beef flesh as affected by age and condition

Ritchie, Walter Stuntz. Moulton, Charles Robert, Trowbridge, Perry Fox, Haigh, L. D. January 1900 (has links)
Thesis (Ph. D.)--University of Missouri, 1922. / Biographical note. Caption title: Studies in animal nutrition. IV. The nitrogen, ash and phosphorus distribution in beef flesh as affected by age and condition [by] Walter S. Ritchie, C. Robert Moulton, P.F. Trowbridge, L.D. Haigh. Published also as the Missouri. Agricultural experiment station. Research bulletin 59. Bibliography: p. 61.
2

Absorção e assimilação de uréia pela bromélia epífita com tanque Vriesea gigantea / Urea uptake and assimilation by the epiphytic tank bromeliad Vriesea gigantea

Cambuí, Camila Aguetoni 20 August 2009 (has links)
Apesar do ambiente epifítico ser caracterizado como bastante desfavorável para o desenvolvimento de vegetais devido à falta intermitente de água e escassez de nutrientes, uma grande diversidade de bromélias o ocupam com sucesso. Uma série de características adaptativas, tanto morfológicas, anatômicas e fisiológicas, está presente nessas plantas e as capacitam a utilizar com grande eficiência os recursos disponíveis de maneira escassa e temporária. O enfoque deste trabalho foi direcionado à compreensão das estratégias adotadas pela bromélia epífita com tanque Vriesea gigantea para a utilização da ureia, uma fonte de nitrogênio não usual para a maioria das plantas terrestres. Em decorrência da frequente associação com anfíbios em ambiente natural, a ureia é um recurso disponibilizado ocasionalmente e durante um curto período na água do tanque. Foram isolados 2 cDNAs completos de aquaporinas potencialmente envolvidos no transporte de ureia: VgPIP1,5 e VgTIP2, que codificam proteínas de membranas plasmática e de tonoplasto, respectivamente. Ambos os genes tiveram expressão mais acentuada nas bases foliares e foram pouco afetados pelo regime de luz. Além disso, a expressão desses genes foi estimulada na presença de ureia, o que não foi observado para em relação às fontes inorgânicas amônio e nitrato. A assimilação de ureia pareceu ser, em grande parte, dependente de hidrólise prévia em NH4+ e CO2, reação essa catalisada pela urease. Foi demonstrado que ambos os produtos dessa reação são incorporados rapidamente, formando aminoácidos (principalmente via GDH, GS/GOGAT e subseqüentes transaminases) e esqueletos carbônicos Infelizmente, a incorporação direta de ureia via reação inversa da arginase não foi confirmada, embora esse resultado possa estar relacionado a limitações metodológicas para a análise de arginina. Ainda assim, evidências sugerem que, se não pela arginase, outras vias alternativas de assimilação direta de ureia possam estar envolvidas. Além da sua importância da urease na hidrólise citossólica de ureia, foi demonstrada, de forma inédita em plantas, a presença dessa enzima nas frações de membranas e parede celular de V. gigantea. É muito provável que, além da capacidade de secreção da urease para a região do tanque, a presença dessa enzima em regiões próximas à superfície celular torne mais rápido e eficiente o processo de assimilação de ureia pelas células. Embora seja caracterizada como um recurso de disponibilidade ocasional e de curta duração e por ser alvo de intensa competição interespecífica, a ureia ainda assim é a fonte de N preferencial para Vriesea gigantea. É provável que um dos motivos que levou essa espécie a utilizar preferencialmente a ureia seja a vantagem de se obter, simultaneamente, tanto carbono quanto nitrogênio, ambos presentes em quantidades limitantes no seu habitat natural. / Although the growth conditions in epiphytic habitats are unfavourable for plant growth due to water and nutrient limitations, a great diversity of bromeliads successfully occupy this environment. These plants have evolved a variety of morphological, anatomical and physiological adaptations allowing them a highly efficient use of available resources. The main objective of the present work was to elucidate the strategies of the epiphytic tank bromeliad Vriesea gigantea to utilize urea, a nitrogen source generally considered to be uncommon for most terrestrial plants. Although in natural environments urea is frequently excreted by amphibians that are associated with the tank of these plants, the availability of this nitrogen source is nevertheless short-lived and unpredictable. Two complete cDNA sequences encoding plasma membrane and tonoplast aquaporin proteins, which are potentially involved in urea transport, were isolated from leaf tissues of Vriesea gigantea: VgPIP1,5 and VgTIP2, respectively. Both genes were mainly expressed in the leaf bases and were not affected by light conditions. Moreover, the expression of these aquaporins was stimulated in the presence of urea in the culture medium, while no effect was observed with ammonium and nitrate as nitrogen source. Urea assimilation is thought to be strongly dependent on precedent hydrolysis of urea to NH4+ and CO2 mediated by urease. Both products of this reaction were quickly assimilated and incorporated into amino acids (mainly via GDH, GS/GOGAT and subsequent transaminases) and carbon skeletons. On the contrary, the direct incorporation of urea via a reverse reaction of arginase could not be confirmed due to the methodological limitation of analyzing double-labelled (13C-,15N-) arginine. However, there is strong evidence suggesting that arginase or other alternative assimilation pathways may be involved in urea assimilation. Despite the importance of urease in the cytosolic hydrolysis of urea, the present work demonstrates for the first time that this enzyme is present in both, membrane and cell wall fractions of V. gigantea. Consequently, besides the capacity of this plant to excrete urease into the tank water, the close association of this enzyme to urea uptake regions could further increase the rate and efficiency of urea assimilation by plant cells. Although urea is characterized as an occasional and only short-lived nutrient source, which is furthermore subject to intense interspecific competition, urea can be considered to be a preferential nitrogen source for Vriesea gigantea. One reason for the preferential use of urea could be the advantage of simultaneously gaining carbon and nitrogen, two limiting resources in the natural habitat of epiphytic bromeliads.
3

Assimilação do nitrogênio em diferentes regiões foliares de uma bromélia epífita com tanque / Nitrogen assimilation in different leaf portions of a tank epiphytic bromeliad

Takahashi, Cassia Ayumi 29 August 2008 (has links)
A folha é o principal órgão de absorção e assimilação de nutrientes dos membros epífitos com tanque da família Bromeliaceae. Pouco se conhece sobre a nutrição dessas bromélias, entretanto algumas evidências (TAKAHASHI, 2007) indicaram a possibilidade de haver uma absorção preferencial do nitrogênio na porção basal e a assimilação desse nutriente na porção apical foliar. Para se compreender melhor os mecanismos de assimilação do nitrogênio utilizados pelas bromélias epífitas com tanque, foi proposto neste trabalho dois principais objetivos: 1) verificar possíveis diferenças quanto à capacidade de assimilação do nitrogênio em diferentes porções foliares de uma bromélia epífita com tanque; 2) constatar possível preferência em assimilar fonte nitrogenada orgânica ou inorgânica, quando ambas estão disponíveis no interior do tanque. A estratégia utilizada para o primeiro objetivo foi cultivar bromélias da espécie Vriesea gigantea, cultivadas em casa de vegetação e registrar em suas folhas as variações temporais das atividades enzimáticas da urease, redutase do nitrato (NR), sintetase da glutamina (GS), desidrogenase do glutamato dependente de NADH (GDH-NADH) e arginase após o fornecimento, no interior do tanque das bromélias, de uma solução nutritiva contendo NO3-/NH4+ (3:2) ou uréia (5mM de N total), como fontes de nitrogênio. Foram analisadas as atividades enzimáticas nas porções apical e basal foliar de Vriesea gigantea nos seguintes tempos: 0, 1, 3, 6, 9, 12, 24, 48, 51, 54, 57, 60 e 73 horas após a rega. Além disso, também foram quantificadas as concentrações do amônio e da uréia endógenos presentes nos tecidos foliares de ambas as porções. Os resultados mostraram que, independente do tratamento, as atividades de GS, GDH e arginase foram mais altas na porção apical em todos os tempos de coleta. Já as atividades da NR e urease, foram crescentes e mais intensas na porção basal, da mesma forma como foi visto para as concentrações endógenas de amônio durante as primeiras 24 horas. As maiores concentrações de uréia endógenas também foram registradas principalmente na porção basal foliar. Esses resultados permitem inferir que a região apical pode estar envolvida, preferencialmente, com a assimilação do nitrogênio, enquanto que a basal, com a sua absorção, redução do nitrato e hidrólise da uréia. Além disso, sugere-se também que ocorra o transporte de amônio da base para a região de sua assimilação em aminoácidos (ápice) através do xilema e apoplasto. Em relação ao segundo objetivo, a estratégia utilizada foi fornecer à bromélia Vriesea gigantea com uma solução nutritiva que continha 5mM de nitrogênio total, disponível na forma inorgânica + orgânica (NH4+/NO3- + uréia nas proporções 1:1 ou 1:3, respectivamente). Como controle foram empregados os seguintes tratamentos: ausência de nitrogênio e presença de somente fontes inorgânicas (5mM de nitrogênio total). As porções apical e basal das folhas foram coletadas 9 horas após o fornecimento das soluções nutritivas e, posteriormente, utilizadas nas análises enzimáticas referentes às atividades da urease, NR, GS, e GDH-NADH. Além disso, foram quantificados em ambas as porções os teores endógenos de amônio, uréia, amido, açúcares totais e clorofila total. Também foram determinados as densidades de tricomas e estômatos nas duas regiões foliares. Verificou-se que as maiores atividades da GS (porção apical) e GDH (porção basal) foram registradas nos dois tratamentos com uréia (1:1 e 1:3) quando comparadas com as dos dois controles. As maiores concentrações de amônio endógeno na porção basal também foram detectadas nos mesmos tratamentos com uréia (1:1 e 1:3). Já a atividade da NR apresentou os maiores valores nos tratamentos de proporção 1:1 e no controle 2 (com somente fontes inorgânicas) na porção basal foliar. De modo interessante, a GS não mostrou o mesmo desempenho nos dois tratamentos (1:1 e controle 2), sendo que, no tratamento de proporção 1:1, a atividade foi o dobro daquela registrada no controle 2. Todos esses resultados analisados em conjunto permitem inferir que a bromélia Vriesea gigantea pode ter preferência por assimilar o nitrogênio proveniente da uréia quando essa fonte se encontra disponível no interior do tanque, mesmo quando também há a presença de formas inorgânicas (nitrato e amônio). / The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. Little is known about the nutrition of these bromeliads, but there are evidences that the basal region of the leaf may be preferentially involved with the absorption of nutrients, whereas the apical region may be involved with its assimilation (TAKAHASHI, 2007). In order to better understand the mechanisms utilized by these tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, it was proposed in this study two main objectives: 1) verify the existence of a differential capacity to assimilate nitrogen in different leaf portions of a tank epiphytic bromeliad; 2) analyze the nitrogen assimilation preference between inorganic and organic nitrogen sources when both are available in the tank water. The experiments of the first objective were conducted using Vriesea gigantea plants, a typical specie of tank epiphytic bromeliad, cultivated in greenhouse. Nutrient solution containing NO3-/NH4+ (3:2) or urea as nitrogen source (5mM of total N) was supplied into the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS), NADH-dependent glutamate dehydrogenase (GDH-NADH) and arginase were quantified in apical and basal leaf portions after 0, 1, 3, 6, 9, 12, 24, 48, 51, 54, 57, 60 and 73 hours. The ammonium and urea present in the tissues were also analyzed. Independent of the nitrogen source utilized, GS, GDH and arginase activities were higher in the apical portions of leaves in all the period analyzed. On the other hand, the opposite was observed in relation to NR and urease activities. The highest activities were detected in the basal portion of leaves at all harvest times, with increasing values during the first 24 hours of experiment. Interestingly, this same pattern was also observed in relation to the endogenous ammonium and urea: the highest contents were detected in the basal portion of leaves, with a gradual increase of ammonium in the first 24 hours of analysis. These results suggest that the basal portion of leaves was preferentially involved in nitrogen uptake, nitrate reduction and urea hydrolysis, while the apical portion was the main responsible for nitrogen assimilation. Moreover, it was possible to infer that the ammonium may be transported from the base (uptake region) to the apex of the leaves (the main nitrogen assimilation region) through the xylem and apoplast. In order to analyze the nitrogen assimilation preference of Vriesea gigantea, a nutrient solution containing 5mM of nitrogen containing a mixture of inorganic and organic sources (NH4+/NO3- + urea in the proportion 1:1 or 1:3, respectively) were supplied into the tank of the bromeliads. As a control, a nutrient solution containing no nitrogen source (control 1) or 5mM of inorganic nitrogen sources (control 2) were used. The basal and apical leaf tissues were collected after 9 hours and the activities of urease, NR, GS and GDH-NADH were analyzed. Endogenous ammonium, urea, starch, total soluble carbohydrates and total chlorophyll were also quantified. Furthermore, the density of trichomes and stomata were also analyzed on the abaxial leaf surface of both regions. The highest activities of GS (apex) and GDH (base), as well as the endogenous ammonium content (base), were registered in both treatments with urea (1:1 and 1:3) in comparison with both controls. A different pattern was obtained analyzing NR: the highest activities were observed in plants that received nutrient solutions containing only inorganic nitrogen (control 2) or a mixture of inorganic and organic nitrogen in the proportion 1:1. Moreover, an interesting behavior was observed in relation to the GS activity: it was detected the double activity of this enzyme when Vriesea gigantea was in contact with a mixture of inorganic and organic nitrogen (1:1) in comparison to the plants in the presence of only inorganic nitrogen sources. All results suggest that Vriesea gigantea may have preference to assimilate organic nitrogen source (urea), when the inorganic nitrogen sources (ammonium and nitrate) are also available in the tank water.
4

Absorção e assimilação de uréia pela bromélia epífita com tanque Vriesea gigantea / Urea uptake and assimilation by the epiphytic tank bromeliad Vriesea gigantea

Camila Aguetoni Cambuí 20 August 2009 (has links)
Apesar do ambiente epifítico ser caracterizado como bastante desfavorável para o desenvolvimento de vegetais devido à falta intermitente de água e escassez de nutrientes, uma grande diversidade de bromélias o ocupam com sucesso. Uma série de características adaptativas, tanto morfológicas, anatômicas e fisiológicas, está presente nessas plantas e as capacitam a utilizar com grande eficiência os recursos disponíveis de maneira escassa e temporária. O enfoque deste trabalho foi direcionado à compreensão das estratégias adotadas pela bromélia epífita com tanque Vriesea gigantea para a utilização da ureia, uma fonte de nitrogênio não usual para a maioria das plantas terrestres. Em decorrência da frequente associação com anfíbios em ambiente natural, a ureia é um recurso disponibilizado ocasionalmente e durante um curto período na água do tanque. Foram isolados 2 cDNAs completos de aquaporinas potencialmente envolvidos no transporte de ureia: VgPIP1,5 e VgTIP2, que codificam proteínas de membranas plasmática e de tonoplasto, respectivamente. Ambos os genes tiveram expressão mais acentuada nas bases foliares e foram pouco afetados pelo regime de luz. Além disso, a expressão desses genes foi estimulada na presença de ureia, o que não foi observado para em relação às fontes inorgânicas amônio e nitrato. A assimilação de ureia pareceu ser, em grande parte, dependente de hidrólise prévia em NH4+ e CO2, reação essa catalisada pela urease. Foi demonstrado que ambos os produtos dessa reação são incorporados rapidamente, formando aminoácidos (principalmente via GDH, GS/GOGAT e subseqüentes transaminases) e esqueletos carbônicos Infelizmente, a incorporação direta de ureia via reação inversa da arginase não foi confirmada, embora esse resultado possa estar relacionado a limitações metodológicas para a análise de arginina. Ainda assim, evidências sugerem que, se não pela arginase, outras vias alternativas de assimilação direta de ureia possam estar envolvidas. Além da sua importância da urease na hidrólise citossólica de ureia, foi demonstrada, de forma inédita em plantas, a presença dessa enzima nas frações de membranas e parede celular de V. gigantea. É muito provável que, além da capacidade de secreção da urease para a região do tanque, a presença dessa enzima em regiões próximas à superfície celular torne mais rápido e eficiente o processo de assimilação de ureia pelas células. Embora seja caracterizada como um recurso de disponibilidade ocasional e de curta duração e por ser alvo de intensa competição interespecífica, a ureia ainda assim é a fonte de N preferencial para Vriesea gigantea. É provável que um dos motivos que levou essa espécie a utilizar preferencialmente a ureia seja a vantagem de se obter, simultaneamente, tanto carbono quanto nitrogênio, ambos presentes em quantidades limitantes no seu habitat natural. / Although the growth conditions in epiphytic habitats are unfavourable for plant growth due to water and nutrient limitations, a great diversity of bromeliads successfully occupy this environment. These plants have evolved a variety of morphological, anatomical and physiological adaptations allowing them a highly efficient use of available resources. The main objective of the present work was to elucidate the strategies of the epiphytic tank bromeliad Vriesea gigantea to utilize urea, a nitrogen source generally considered to be uncommon for most terrestrial plants. Although in natural environments urea is frequently excreted by amphibians that are associated with the tank of these plants, the availability of this nitrogen source is nevertheless short-lived and unpredictable. Two complete cDNA sequences encoding plasma membrane and tonoplast aquaporin proteins, which are potentially involved in urea transport, were isolated from leaf tissues of Vriesea gigantea: VgPIP1,5 and VgTIP2, respectively. Both genes were mainly expressed in the leaf bases and were not affected by light conditions. Moreover, the expression of these aquaporins was stimulated in the presence of urea in the culture medium, while no effect was observed with ammonium and nitrate as nitrogen source. Urea assimilation is thought to be strongly dependent on precedent hydrolysis of urea to NH4+ and CO2 mediated by urease. Both products of this reaction were quickly assimilated and incorporated into amino acids (mainly via GDH, GS/GOGAT and subsequent transaminases) and carbon skeletons. On the contrary, the direct incorporation of urea via a reverse reaction of arginase could not be confirmed due to the methodological limitation of analyzing double-labelled (13C-,15N-) arginine. However, there is strong evidence suggesting that arginase or other alternative assimilation pathways may be involved in urea assimilation. Despite the importance of urease in the cytosolic hydrolysis of urea, the present work demonstrates for the first time that this enzyme is present in both, membrane and cell wall fractions of V. gigantea. Consequently, besides the capacity of this plant to excrete urease into the tank water, the close association of this enzyme to urea uptake regions could further increase the rate and efficiency of urea assimilation by plant cells. Although urea is characterized as an occasional and only short-lived nutrient source, which is furthermore subject to intense interspecific competition, urea can be considered to be a preferential nitrogen source for Vriesea gigantea. One reason for the preferential use of urea could be the advantage of simultaneously gaining carbon and nitrogen, two limiting resources in the natural habitat of epiphytic bromeliads.
5

Assimilação do nitrogênio em diferentes regiões foliares de uma bromélia epífita com tanque / Nitrogen assimilation in different leaf portions of a tank epiphytic bromeliad

Cassia Ayumi Takahashi 29 August 2008 (has links)
A folha é o principal órgão de absorção e assimilação de nutrientes dos membros epífitos com tanque da família Bromeliaceae. Pouco se conhece sobre a nutrição dessas bromélias, entretanto algumas evidências (TAKAHASHI, 2007) indicaram a possibilidade de haver uma absorção preferencial do nitrogênio na porção basal e a assimilação desse nutriente na porção apical foliar. Para se compreender melhor os mecanismos de assimilação do nitrogênio utilizados pelas bromélias epífitas com tanque, foi proposto neste trabalho dois principais objetivos: 1) verificar possíveis diferenças quanto à capacidade de assimilação do nitrogênio em diferentes porções foliares de uma bromélia epífita com tanque; 2) constatar possível preferência em assimilar fonte nitrogenada orgânica ou inorgânica, quando ambas estão disponíveis no interior do tanque. A estratégia utilizada para o primeiro objetivo foi cultivar bromélias da espécie Vriesea gigantea, cultivadas em casa de vegetação e registrar em suas folhas as variações temporais das atividades enzimáticas da urease, redutase do nitrato (NR), sintetase da glutamina (GS), desidrogenase do glutamato dependente de NADH (GDH-NADH) e arginase após o fornecimento, no interior do tanque das bromélias, de uma solução nutritiva contendo NO3-/NH4+ (3:2) ou uréia (5mM de N total), como fontes de nitrogênio. Foram analisadas as atividades enzimáticas nas porções apical e basal foliar de Vriesea gigantea nos seguintes tempos: 0, 1, 3, 6, 9, 12, 24, 48, 51, 54, 57, 60 e 73 horas após a rega. Além disso, também foram quantificadas as concentrações do amônio e da uréia endógenos presentes nos tecidos foliares de ambas as porções. Os resultados mostraram que, independente do tratamento, as atividades de GS, GDH e arginase foram mais altas na porção apical em todos os tempos de coleta. Já as atividades da NR e urease, foram crescentes e mais intensas na porção basal, da mesma forma como foi visto para as concentrações endógenas de amônio durante as primeiras 24 horas. As maiores concentrações de uréia endógenas também foram registradas principalmente na porção basal foliar. Esses resultados permitem inferir que a região apical pode estar envolvida, preferencialmente, com a assimilação do nitrogênio, enquanto que a basal, com a sua absorção, redução do nitrato e hidrólise da uréia. Além disso, sugere-se também que ocorra o transporte de amônio da base para a região de sua assimilação em aminoácidos (ápice) através do xilema e apoplasto. Em relação ao segundo objetivo, a estratégia utilizada foi fornecer à bromélia Vriesea gigantea com uma solução nutritiva que continha 5mM de nitrogênio total, disponível na forma inorgânica + orgânica (NH4+/NO3- + uréia nas proporções 1:1 ou 1:3, respectivamente). Como controle foram empregados os seguintes tratamentos: ausência de nitrogênio e presença de somente fontes inorgânicas (5mM de nitrogênio total). As porções apical e basal das folhas foram coletadas 9 horas após o fornecimento das soluções nutritivas e, posteriormente, utilizadas nas análises enzimáticas referentes às atividades da urease, NR, GS, e GDH-NADH. Além disso, foram quantificados em ambas as porções os teores endógenos de amônio, uréia, amido, açúcares totais e clorofila total. Também foram determinados as densidades de tricomas e estômatos nas duas regiões foliares. Verificou-se que as maiores atividades da GS (porção apical) e GDH (porção basal) foram registradas nos dois tratamentos com uréia (1:1 e 1:3) quando comparadas com as dos dois controles. As maiores concentrações de amônio endógeno na porção basal também foram detectadas nos mesmos tratamentos com uréia (1:1 e 1:3). Já a atividade da NR apresentou os maiores valores nos tratamentos de proporção 1:1 e no controle 2 (com somente fontes inorgânicas) na porção basal foliar. De modo interessante, a GS não mostrou o mesmo desempenho nos dois tratamentos (1:1 e controle 2), sendo que, no tratamento de proporção 1:1, a atividade foi o dobro daquela registrada no controle 2. Todos esses resultados analisados em conjunto permitem inferir que a bromélia Vriesea gigantea pode ter preferência por assimilar o nitrogênio proveniente da uréia quando essa fonte se encontra disponível no interior do tanque, mesmo quando também há a presença de formas inorgânicas (nitrato e amônio). / The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. Little is known about the nutrition of these bromeliads, but there are evidences that the basal region of the leaf may be preferentially involved with the absorption of nutrients, whereas the apical region may be involved with its assimilation (TAKAHASHI, 2007). In order to better understand the mechanisms utilized by these tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, it was proposed in this study two main objectives: 1) verify the existence of a differential capacity to assimilate nitrogen in different leaf portions of a tank epiphytic bromeliad; 2) analyze the nitrogen assimilation preference between inorganic and organic nitrogen sources when both are available in the tank water. The experiments of the first objective were conducted using Vriesea gigantea plants, a typical specie of tank epiphytic bromeliad, cultivated in greenhouse. Nutrient solution containing NO3-/NH4+ (3:2) or urea as nitrogen source (5mM of total N) was supplied into the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS), NADH-dependent glutamate dehydrogenase (GDH-NADH) and arginase were quantified in apical and basal leaf portions after 0, 1, 3, 6, 9, 12, 24, 48, 51, 54, 57, 60 and 73 hours. The ammonium and urea present in the tissues were also analyzed. Independent of the nitrogen source utilized, GS, GDH and arginase activities were higher in the apical portions of leaves in all the period analyzed. On the other hand, the opposite was observed in relation to NR and urease activities. The highest activities were detected in the basal portion of leaves at all harvest times, with increasing values during the first 24 hours of experiment. Interestingly, this same pattern was also observed in relation to the endogenous ammonium and urea: the highest contents were detected in the basal portion of leaves, with a gradual increase of ammonium in the first 24 hours of analysis. These results suggest that the basal portion of leaves was preferentially involved in nitrogen uptake, nitrate reduction and urea hydrolysis, while the apical portion was the main responsible for nitrogen assimilation. Moreover, it was possible to infer that the ammonium may be transported from the base (uptake region) to the apex of the leaves (the main nitrogen assimilation region) through the xylem and apoplast. In order to analyze the nitrogen assimilation preference of Vriesea gigantea, a nutrient solution containing 5mM of nitrogen containing a mixture of inorganic and organic sources (NH4+/NO3- + urea in the proportion 1:1 or 1:3, respectively) were supplied into the tank of the bromeliads. As a control, a nutrient solution containing no nitrogen source (control 1) or 5mM of inorganic nitrogen sources (control 2) were used. The basal and apical leaf tissues were collected after 9 hours and the activities of urease, NR, GS and GDH-NADH were analyzed. Endogenous ammonium, urea, starch, total soluble carbohydrates and total chlorophyll were also quantified. Furthermore, the density of trichomes and stomata were also analyzed on the abaxial leaf surface of both regions. The highest activities of GS (apex) and GDH (base), as well as the endogenous ammonium content (base), were registered in both treatments with urea (1:1 and 1:3) in comparison with both controls. A different pattern was obtained analyzing NR: the highest activities were observed in plants that received nutrient solutions containing only inorganic nitrogen (control 2) or a mixture of inorganic and organic nitrogen in the proportion 1:1. Moreover, an interesting behavior was observed in relation to the GS activity: it was detected the double activity of this enzyme when Vriesea gigantea was in contact with a mixture of inorganic and organic nitrogen (1:1) in comparison to the plants in the presence of only inorganic nitrogen sources. All results suggest that Vriesea gigantea may have preference to assimilate organic nitrogen source (urea), when the inorganic nitrogen sources (ammonium and nitrate) are also available in the tank water.
6

Odpověď fotosyntetického aparátu smrku ztepilého a buku lesního na vybrané stresové podmínky - srovnávací studie. / The response of Norway spruce and European beech's photosynthetic apparatus to some stress factors - comparative study

NOVÁKOVÁ, Hana January 2012 (has links)
In the context of expected climate changes is more and more important to study how will species of present ecosystems react to this changes. Thus this study is focused on reactions of two main forest tree species of Central Europe ? Norway spruce (Piacea abies L.) and European beech (Fagus sylvatica L.) ? to water stress, higher quantity of N in soil, combination of theese stress factors and heat stress. The effects of stress were monitored on maximal photochemical efficiency of PS II (Fv / Fm) and on contents of photosynthetic pigments. It was found that Norway spruce is more resistant to all mentioned stress factors than European beech.
7

Characterizing the role in amino acid sensing and signaling of Amino Acid Permease 1 in Arabidopsis

Shelley, Brett A. 28 July 2021 (has links)
Amino acids are necessary for protein synthesis and specialized metabolism in plants. Yet very little is known about how plants sense and regulate when and where to allocate amino acids to meet the demand for nitrogen in growing tissues. In particular, while characterized in yeast and mammals, no amino acid sensor has been identified in plants. Amino Acid Permease 1 (AAP1) has been previously characterized and was shown to mediate amino acid uptake from the soil. aap1 knockout plants and several EMS mutants affected in AAP1 sequence display enhanced tolerance to toxic concentrations of amino acids. Yet, two of the corresponding variant proteins appear to be functional transporters, effectively dissociating amino acid transport and phenotype. To understand this apparent discrepancy, I precisely studied AAP1 localization of expression at the plant and cellular level, and in specific tissue types of the root where AAP1 function is required for the tolerance phenotype and the amino acid uptake activity. I showed that AAP1 protein is present in the endoplasmic reticulum of the cortex in wild type plants Yet, its ectopic expression in root tip and phloem increased amino acid uptake, while expression in cortex could not. This and other of my results do not support the current model of AAP1 functioning in amino acid uptake by the root. I propose that the main effect of mutations in AAP1 is a disturbance in amino acid metabolism, possibly triggered by altered amino acid sensing. In this new model, AAP1 would be necessary for sensing amino acid status of cortex cells, possibly in the endoplasmic reticulum, and adjust amino acid metabolic activity and uptake to current availability. In effect, disruption of the sensing function, either by complete loss of AAP1 function (knockout) or by uncoupling the transport and sensing function (EMS mutants), would lead to the various characteristics of the phenotype of the aap1 mutants I observed. My main hypothesis is that AAP1 is a transporter endowed with sensing function, i.e., an amino acid transceptor. / Doctor of Philosophy / Changing environments create challenges for plants to grow under harsher, nutrient limiting conditions. Nitrogen is an essential nutrient for plant growth, used for the synthesis of amino acids and other nitrogen-containing metabolites. Amino acids are necessary for protein synthesis and other specialized metabolism – being targets for manipulation for improving agronomic traits. Protein content is a complex trait that involves many genes, possibly including amino acid transporters. In addition, the amount of nitrogen needed by and available to the plant increases or decreases depending on the environment conditions. How plants control nitrogen need and use at the molecular level is not well understood. The data presented here challenge a current model and I report how a protein (AAP1) involved in the acquisition of amino acids from the soil provides regulatory control over these processes. . This valuable information is useful for better understanding how plants use nitrogen and more precise breeding methods can be used to improve traits, such as protein content in agronomically important crops.
8

Modélisation de la croissance, des relations sources-puits et du rendement en sucre de la betterave sucrière (Beta vulgaris L.) sous des régimes contrastés de nutrition azotée / Growth, source-sink relationships and yield modeling of sugar beet under contrasting regimes of nitrogen nutrition

Didier, Anne 04 June 2013 (has links)
La filière betteravière française cherche à gagner en productivité afin d'obtenir des rendements en sucre économiquement satisfaisants. La fertilisation azotée est l'un des principaux facteurs influençant le rendement de la betterave sucrière. De nombreux modèles ont pour but de simuler le rendement en sucre de la betterave mais peu prennent en compte l'effet des conditions de nutrition azotée. Dans ce contexte, les objectifs de ce travail étaient: (i) de mener une réflexion conduisant au choix du type de modélisation, (ii) d'identifier les caractéristiques de la plante en réponse à la nutrition azotée pour le paramétrage du modèle, et (iii) d'évaluer notre modèle. La démarche de modélisation s'est concentrée sur l'intégration des effets de la nutrition azotée sur l'élaboration de la surface foliaire, et sur les relations source-puits au sein de la plante. Des expérimentations au champ sur deux années nous ont permis d'acquérir les données nécessaires à l'étude des réponses de la betterave à des conditions contrastées de nutrition azotée et au paramétrage du modèle. Un travail de compilation de données de validation disponibles à l'ITB a permis de prendre en compte la variabilité des paramètres. Nous avons constaté que la betterave répondait à la nutrition azotée comme les autres plantes en C3. Le modèle simule les différences de rendement en sucre en fonction de l'état de nutrition azotée comme annoncé dans la bibliographie. Le modèle permet de retrouver sans les imposer les stades de croissance de la betterave. Couplé au module de fourniture d'azote du modèle STICS, le modèle permet de simuler les grandes tendances des rendements depuis les trente dernières années. / The French sugar beet industry seeks to increase productivity in order to obtain sugar yields economically satisfactory. Nitrogen fertilization is one of the main factors influencing yield of sugar beet. Many models are designed to simulate the yield of sugar beet but few take into account the effect of nitrogen nutrition conditions. In this context, the objectives of this work were: (i) to reflect leading to the choice of the type of modeling, (ii) to identify the plant characteristics in response to nitrogen nutrition for parameterization of the model and (iii) evaluate our model.The modeling approach has focused on the integration of the nitrogen nutrition effects on the leaf area development, and source-sink relationships within the plant. Two years field experiments have enabled us to acquire data necessary for the study of the sugar beet responses under contrasting nitrogen nutrition conditions and parameterization of the model. A compilation of a data set validation at the ITB makes it possible to take into account parameters variability. We found that sugar beet responded to nitrogen nutrition as the other C3 plants. The model simulates the differences in sugar yield based on nitrogen nutrition status as reported in the literature. The model can find growth stages of sugar beet without force them. Coupled to the supply nitrogen module of the STICS crop model, the model simulates the major trends in yields over the past thirty years.
9

SOIL MANAGEMENT AND NITROGEN DYNAMICS IN BURLEY TOBACCO ROTATIONS

Zou, Congming 01 January 2015 (has links)
Agronomic practices, including tillage, crop rotation and N fertilization, have been developed to efficiently manage soil N dynamics and crop N nutrition. These practices can affect soil organic carbon (SOC) and soil total nitrogen (STN) sequestration, and consequently influence soil nitrogen mineralization (SNM) and crop N nutrition. However, little research has been systematically and simultaneously conducted to examine the effect of agronomic management on (1) SOC and STN stocks; (2) SNM; and (3) crop N nutrition. Burley tobacco (Nicotiana tobacum L.) is a N demanding crop and subject to inefficiency in N fertilization. Moreover, conservation tillage and rotation have been integrated into traditionally tillage intensive tobacco cropping systems. Thus, a tobacco tillage and rotation study was used to test how agronomic practices can affect N dynamics and crop N status in a series of sequential experiments. Firstly, different tobacco production systems were utilized to investigate the effects of tillage and rotation on soil aggregate stabilization and associated SOM sequestration. No-tillage and rotation management enhanced SOC and STN stocks, mainly by increasing the proportion of macroaggregates and SOC and STN concentrations. Secondly, a series of studies were conducted on SNM, including: (1) comparison of laboratory and in situ resin-core methods in estimating SNM; (2) evaluation of the influence of N fertilizer application on SNM; and (3) comparison of chemical indices for predicting SNM across management treatments over time. Laboratory method had different results relative to in situ method due to sample pretreatments. Fertilizer N application had a priming effect on SNM, but priming depended on both the N fertilizer rate and the background SOM level. The effect of rotation/tillage treatments on SNM was stable across years and SOC appeared to be the best indicator of SNM among other soil carbon and N estimates. Thirdly, a N fertilizer study for different tillage systems was conducted in 2012 and 2013. Crop parameters and plant available N (PAN) were collected to investigate the impact of tillage on tobacco production. Crop parameters showed that no-tillage can result in N deficiency in dry years. Similar PAN for both tillage methods suggested N deficiency in no-till tobacco was due to the crop’s lower N uptake capacity. In 2014, tobacco root analysis confirmed that no-tillage can result in less root exploration of the soil volume than conventional tillage.
10

Assimilação do nitrogênio em folhas de Vriesea gigantea (Bromeliaceae) durante a transição ontogenética do hábito atmosférico para o epífito com tanque / Nitrogen assimilation in leaves of Vriesea gigantea (Bromeliaceae) during the ontogenetic transition from atmospheric to tank epiphyte habit

Takahashi, Cassia Ayumi 10 March 2014 (has links)
A fase de desenvolvimento é um importante fator a ser considerado em pesquisas sobre nutrição de bromélias. O hábito de vida dessas plantas pode mudar de: atmosférica (com folhas sem formar um tanque) para o com tanque ao longo do seu desenvolvimento. Algumas pesquisas mostraram que o conteúdo de nitrogênio foliar ou capacidade fotossintética são significantemente influenciados pela fase de desenvolvimento, porém não há registros de que a nutrição e o metabolismo do nitrogênio diferem entre bromélias jovens ou adultas. O objetivo principal deste projeto foi verificar se existem diferenças na dinâmica do metabolismo do nitrogênio (absorção, transporte e assimilação), decorrente da utilização de fontes de distintas (amônio, nitrato ou ureia), entre bromélias nas fases atmosférica ou adultas com tanque desenvolvido. Para tanto, plantas de Vriesea gigantea foram regadas com uma solução nutritiva que conteve 5mM de N total, disponível nas formas: 15NH4+ ou 15NO3- ou 15N-ureia. Foram feitas coletas temporais das raízes e de duas diferentes porções da folha (ápice e base) das bromélias jovens e de três regiões foliares (ápice, mediana e base) das folhas das bromélias adultas com tanque. Todas as amostras vegetais foram utilizadas na avaliação das atividades da: urease, redutase do nitrato, sintetase da glutamina e desidrogenase do glutamato; e da quantificação da abundância isotópica do 15N. Segundo os resultados, o nitrato foi considerado a fonte de nitrogênio absorvida em concentrações menores quando comparada com a ureia e o amônio pelas bromélias de ambas as fases de desenvolvimento. Entretanto, as bromélias atmosféricas mostraram ser capazes de capturar essa fonte inorgânica de nitrogênio mais eficientemente do que as bromélias com tanque, uma vez que o nitrato foi absorvido, transportado e assimilado rapidamente na 1ª hora após o fornecimento dessa fonte. Já para as bromélias adultas, a absorção do nitrato foi lenta e ocorreu, principalmente, no final do experimento (12ª e 24ª hora). O amônio e a ureia foram as fontes absorvidas em maiores concentrações tanto pelas bromélias jovens quanto pelas adultas. Entretanto, as bromélias atmosféricas foram capazes de captar e metabolizar maiores concentrações de nitrogênio proveniente do amônio, enquanto que as da fase adulta com tanque foram mais aptas a absorver e assimilar maiores concentrações de ureia em seus tecidos. A bromélia V. gigantea pode mudar a sua morfologia e fisiologia ao longo de seu desenvolvimento, tornando-se apta a captar as fontes de nitrogênio que, talvez, sejam mais abundantes em cada fase de seu desenvolvimento. A água da chuva que contém, principalmente, fontes inorgânicas de nitrogênio diluídas, pode ser o principal meio por onde as bromélias jovens captam o nitrogênio. Ao desenvolverem um tanque, as bromélias podem mudar a sua fisiologia, capturando preferencialmente fontes de nitrogênio provenientes de matéria orgânica decomposta que se acumula no interior da cisterna. As raízes das bromélias atmosféricas também mostraram cumprir um papel fundamental na nutrição dessas plantas durante a fase juvenil, pois aumentaram a capacidade de absorção e assimilação de fontes de nitrogênio. Quando as bromélias iniciam o desenvolvimento de um tanque, as bases das folhas passaram a assumir a função do sistema radicular, enquanto que as raízes, talvez, começassem a diminuir sua capacidade de captar os nutrientes do meio ambiente. Os resultados bioquímicos demonstraram que existe uma forte sincronização de todas as etapas do metabolismo do nitrogênio (absorção, transporte e assimilação) envolvendo diferentes partes do corpo das bromélias (raízes, porções foliares da base, mediana ou ápice) de ambas as fases de desenvolvimento, sugerindo que nos tecidos vegetais dessas plantas, existe uma fina regulação de todos os processos fisiológicos e metabólicos que compreendem o metabolismo do nitrogênio. Essa regulação controlada seria necessária para que as bromélias atmosféricas ou com tanque desenvolvido consigam absorver, transportar e assimilar as fontes de nitrogênio rapidamente e com grande eficiência. Para finalizar, o novo termo \"bromélia epífita jovem sem tanque\" foi sugerido para se referir à bromélia V. gigantea na fase juvenil ao invés de \"bromélia epífita atmosférica\". As raízes dessa bromélia jovem demonstraram ter um papel fundamental nos processos de absorção e assimilação das fontes de nitrogênio, uma característica que geralmente não é atribuída para as raízes das bromélias com o hábito de vida atmosférico / The stages of ontogenetic development of bromeliad can be an important feature to be considered in the physiology studies because the young plants can be classified as atmospheric bromeliads, while the adult plants have a special structure formed by leaves called tank. Some studies showed that some physiological characteristics can be influenced by the stages of ontogenetic development in bromeliads as photosynthetic taxes or the total nitrogen (N) content in leaves. However, there are no records that nutrition and nitrogen metabolism differ between young and adult epiphytic bromeliads. The objective of this project was to verify the existence of differences in the dynamics of nitrogen metabolism (absorption, transportation and assimilation) arising from the use of distinct nitrogen sources (NH4+, NO3- or urea) in epiphytic bromeliad Vriesea gigantea with different stages of ontogenetic development (atmospheric or tank). A nutrient solution, consisting 5mM of total N, was offered to bromeliads. Three different forms of N sources were used: NH4+, NO3- or urea, enriched with 15N isotopes. Three distinct portions of leaf (apex, middle and base) of adult tank bromeliad and two different regions of leaf (apex and base) and roots of young bromeliads were harvested in six different times. All samples were used in enzymatic assays of urease, nitrate reductase, glutamate sinthetase and glutamate dehydrogenase and in the 15N isotope quantification. According to the results, the nitrate was considered the nitrogen source absorbed at lower concentration by young and adult bromeliads. The atmospheric bromeliads were able to capture nitrate more efficiently than the tank plants, since this inorganic nitrogen source was absorbed and assimilated quickly in the 1st hour of the experimental time while the tank bromeliads absorbed nitrate slowly at the end of the experiment (12th and 24th hour). Ammonium and urea sources were absorbed in higher concentrations by atmospheric and tank bromeliads. The young bromeliads were able to absorb and assimilate higher concentrations of nitrogen from ammonium, while tank bromeliad absorbed and assimilated higher concentrations of urea. In each development stage, the epiphytic bromeliad V. gigantea can absorb and assimilate the nitrogen sources which are more available in the environment. The atmospheric bromeliads get to absorb diluted nutrients as inorganic nitrogen sources mainly from rainwater. After the tank structure developed in the rosette, the morphology and/or physiology features changes in the adult bromeliads. The tank bromeliads get to absorb mainly organic nitrogen sources from decomposed organic matter which accumulates inside the tank. The roots of atmospheric bromeliads also showed an important role in the nutrition of the young plants since the atmospheric bromeliads get to improve the nitrogen sources uptake and nitrogen assimilation. When the bromeliads developed a tank, the bases of the leaves might assume the absorption function, whereas the roots, perhaps, might decrease its capacity to capture the nutrients from the environment. The biochemical results showed that there is a strong synchronization of all stages of nitrogen metabolism (uptake, transport and assimilation) involving different body parts of bromeliads (roots, leaf portions of the base, middle or apex) of both development stages, suggesting that there might have a thin regulation of all physiological and metabolic processes of nitrogen metabolism in the bromeliad\'s tissues. This controlled regulation might be important to the atmospheric or tank bromeliads are able to absorb, allocate and assimilate nitrogen sources quickly and with great efficiency. Finally, the terminology “atmospheric epiphytic bromeliad” might not be appropriated to refer to young plants since their roots showed an important role in the absorption and assimilation of nitrogen sources. This feature is not usually attributed to the roots of atmospheric bromeliads. Then, the new terminology “young epiphytic bromeliad without tank” was suggested to refer the bromeliad V. gigantea in the juvenile phase

Page generated in 0.1174 seconds