• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NOx removal & transformations in fungal bioreactors

Chung, Sung Yeup, 1971- 02 August 2011 (has links)
Not available / text
2

POLLUTANT FORMATION IN FLAT LAMINAR OPPOSED JET DIFFUSION FLAMES

Hahn, Werner Artur January 1979 (has links)
No description available.
3

Catalytic reduction of nitric oxide by carbon monoxide or hydrogen over a Monel metal catalyst

Crawford, Ian Stewart. January 1987 (has links) (PDF)
Includes summary. Includes bibliographies.
4

Low NOx coal burner temperature profile evaluation

Smit, Dewan January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg 2016 / Stringent worldwide emissions legislation, the drive to lower carbon emissions, together with the ever increasing demand to preserve the environment has led to a considerable demand for cleaner and more efficient coal combustion technologies. A primary technology for the reduction of emissions of oxides of nitrogen (NOx) is the installation of low NOx coal combustion burners. Extensive research into various burner characteristics and, in particular, the aerodynamic characteristics required to improve combustion performance of low NOx coal burners has been extensively undertaken and is ongoing. In this work the aerodynamic behaviour of a full-scale, aerodynamically staged, single low-NOx coal burner was numerically investigated. The objective of the study was to develop a single low NOx burner CFD model in Ansys Fluent, to better characterize and understand the flame shape in terms of the temperature profile achieved. CFD serve as an additional tool to assist with plant optimization, design proposals and occurrence investigations. To have confidence in the single burner coal combustion CFD model, the results of the model were compared to data obtained from an existing operational low NOx burner on site during a pre-defined load condition. To further improve on the theoretical CFD combustion model, drop tube furnace (DTF) experiments have been done to calculate the single rate Arrhenius kinetic parameters (pre-exponential factor and activation energy) for coal devolatilization and char combustion of the specific South African coal used. The combustion CFD simulations showed with a lower than design air flow through the burner, a reduced amount of swirl was achieved. This reduced amount of swirl produces a jet like flame and influences the way in which the combustion species are brought together. Under these operating conditions the flame distance from the burner mouth was predicted to be 1.2 (m). A very promising result was obtained through CFD and compared well with the in-flame temperature measurement obtained through the burner centre-line of approximately 1.4 (m). In an attempt to improve the aerodynamic profile of the burner under the same operating conditions the swirl angle on the tertiary air (TA) inlet was increased. The increased swirl on the TA inlet of the burner showed an improvement on the aerodynamic profile and had a significant impact on the temperature distribution within the flame. The increased swirl resulted in an improved flame distance of approximately 0.5 (m) from the burner mouth. The effect of increased swirl on the temperature profile of the flame displayed the aerodynamic dependence of the low NOx burner on combustion performance. / MT2017
5

Modeling of Ultrafine Particle Emissions and Ambient Levels for the Near Roadside Environment

Ahmed, Sauda 03 April 2017 (has links)
Various epidemiological studies have linked exposure to Ultrafine Particles (UFP; diameter< 100 nm) to adverse health impacts. Roadway traffic is one of the major sources of UFPs and heavily influences UFP concentrations in the nearby vicinity of major roadways. Modeling efforts to predict UFPs have been limited due to the scarcity of reliable information on emissions, lack of monitoring data and limited understanding of complex processes affecting UFP concentrations near sources. In this study continuous measurement of ultrafine particle number concentrations (PNC) and mass concentrations of nitric oxide (NO), nitrogen dioxide (NO2) and PM2.5 was conducted near an arterial road and freeway at different seasons and meteorological conditions and integrated with traffic count data. PNC showed high correlation with NO (r=0.64 for arterial; 0.61 for freeway), NO2 (r=0.57 for arterial; 0.53 for freeway) and NOx (NOx=NO+NO2; r=0.63 for arterial; 0.59 for freeway) and moderate to low correlation with traffic volume (r=0.33 for arterial; 0.32 for freeway) and PM2.5 (r=0.28 for arterial; 0.23 for freeway); respectively; for both sites at 15 minute averages. The PNC-NOx relationship prevailed on a shorter term (15 min), hourly, and throughout the day basis. Both PNC and NOx showed comparatively higher correlation with traffic during the morning period but became lower during evening which can be attributed to the higher boundary layer and wind speeds. The variable meteorology in the evening affects both PNC and NOx concentrations in the same way and the correlation between NOx and PNC is maintained high both during morning (r=0.74 for arterial; 0.69 for freeway), and evening (r=0.62 for arterial; 0.59 for freeway) periods. Thus nitrogen oxides can be used as a proxy for traffic-related UFP number concentration reflecting the effect of both traffic intensity and meteorological dilution. The PNC-NOx relation was explored for various meteorological parameters i.e. wind speed and temperature. It is found that NOx emission is temperature independent and can be used to reflect the effect of traffic intensity and meteorological dilution. Once the effect of traffic intensity and dilution is removed, the effect of temperature on PNC-NOx ratio becomes important which can be attributed to the variation in PNC emission factors with temperature. The high morning PNC-NOx ratio found at the arterial road is a result of new particle formation due to lower temperature and low concentration of exhaust gases in the morning air favoring nucleation over condensation. This finding has important implication when calculating emission factors for UFP number concentrations. Thus it can be concluded that roadside concentration of ultrafine particles not only depends on traffic intensity but also on meteorological parameters affecting dilution or new particle formation. High concentrations of ultrafine particle number concentration close to a roadway is expected due to higher traffic intensity , as well as during low wind speed causing low dilution and low temperature conditions favoring new particle formation. Finally a simplified approach of calculating particle number emission factor was developed using existing and easily available emission inventory for traffic related tracer gases. Using NOx emission factors from MOVES emission model, the emission ratio of PNC to NOx was converted to develop particle number emission factors. NOx was selected as the traffic related tracer gas since the number concentration of particles is closely correlated to NOx, NOx and particles are diluted in the same way and NOx emission factors are available for a variety of traffic situations. To ensure contribution of fresh traffic exhaust, the average of the difference of pollutant concentrations at high traffic condition and background condition was used to calculate PNC-NOX ratio. Using nitrogen oxides to define background and high-traffic conditions and MOVES emission factor for NOX to convert corresponding PNC-NOX ratio, an average emission factor of (1.82 ± 0.17) E+ 14 particle/ vehicle-km was obtained, suitable for summertime. When compared to existing particle number emission factors derived from dynamometer tests, it was found that there exits reasonable agreement between the calculated real world particle number emission factors and emission factors from dynamometer tests. The calculated emission factor and R-Line dispersion model was tested in predicting near-road particle number concentrations. Although only 23% of the variability in PNC was explained by the dispersion model, 84.33% of the measurements fell within the factor of two envelope. This suggests that there is potential to effectively use these models and thus warrants more in-depth analysis. Finally, a simple map of PNC gradients from major roads of Portland was developed. The results of this study helped identify proxy-indicators to provide reference values for estimating UFP concentrations and emissions that can be used for simple evaluation of particle concentration near major roadways for environmental and urban planning purposes and to assess expected impact of UFP pollution on population living near roadways exposed to elevated concentrations.
6

Effects of hydrating additives on materials used in desulphurisation

Maina, Paul. January 2011 (has links)
M. Tech. Mechanical engineering. / Acid deposition is caused by the emission of acidic gases, for example, nitrogen oxides and sulfur dioxide. Nitrogen oxide emissions can be controlled by the proper selection of equipment and operating conditions. Sulfur dioxide on the other hand, can be cleaned by means of procombustion, combustion or post-combustion techniques; the latter being the most effective. The objective of this study is to find suitable additives which will augment the reactivity of lime towards FGD (flue gas desulfurization), while at the same time being easily available at a low price. Zeolite based sorbents yielded the highest reactivity, and all additives, except iron waste, had pozzolanic materials as their main reactive compounds.

Page generated in 0.5953 seconds