• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seasonal variation in nutrient availability and uptake by oak saplings following four nitrogen treatments on Missouri River floodplain

Plassmeyer, C. J. Van Sambeek, J. W. Eivazi, Frieda. January 2008 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on October 2, 2009). Thesis advisors: Dr. J. W. Van Sambeek, Dr. Frieda Eivazi. Includes bibliographical references.
2

Tropical rainforests getting their fix: The ecological drivers and consequences of nitrogen-fixing trees in regenerating Costa Rican rainforests

Taylor, Benton Neil January 2018 (has links)
Tropical rainforests have an unparalleled capacity to sequester carbon, harbor biodiversity, and cycle water and nutrients due to their high rates of primary production. The large biomass stocks and rapid regeneration rates of these forests are often attributed to ample soil nitrogen and quick recovery of the nitrogen cycle in tropical soils following disturbance. Symbiotic nitrogen-fixing trees, which are relatively abundant at tropical latitudes, have the greatest capacity to provide tropical rainforests with new nitrogen, yet the ecological drivers of tropical symbiotic nitrogen fixers and their effects on the forests they inhabit are not well understood. This dissertation consists of four chapters that examine the patterns, environmental controls, and ecological consequences of symbiotic nitrogen-fixing trees in regenerating and intact rainforests in the Caribbean lowlands of Costa Rica. In chapter 1, I use field sampling in a chronosequence of rainforest plots to show that symbiotic nitrogen fixation declines through succession despite increases in the basal area of nitrogen-fixing trees. Chapters 2 and 3 describe results from a controlled shadehouse experiment assessing the effects of light, soil nitrogen, and plant competition on nitrogen fixation rates and the growth and biomass allocation of nitrogen fixers and non-fixers. In chapter 2, I demonstrate that light regulates nitrogen fixation more strongly than soil nitrogen availability. This is a departure from the historical focus on soil nitrogen as the primary regulator of nitrogen fixation and has the potential to resolve longstanding paradoxes of tropical nitrogen cycling. In chapter 3, I show that nitrogen fixation provides some resistance to competitive effects from neighboring plants in nitrogen-limited conditions, and that nitrogen fixers in these conditions downregulate their fixation rates in the presence of a competitor. This chapter also demonstrates that nitrogen fixation does not represent a significant structural cost to the plant, as reduced root biomass of nitrogen fixers more than compensates for allocation to nodule production. Finally, in Chapter 4, I demonstrate that nitrogen-fixing trees in our chronosequence plots do not promote forest growth, as expected given their capacity to fertilize their neighbors, but rather inhibit forest growth because they are strong competitors. These chapters describe several unexpected findings – i.e. that light primarily drives nitrogen fixation and that nitrogen fixers slow forest growth – which provide new and important insight into the role that nitrogen-fixing trees play in the growth of Costa Rican rainforests.
3

Mixed-species plantations of nitrogen-fixing and non-nitrogen-fixing trees

Forrester, David Ian. January 2004 (has links)
Thesis (Ph. D.)--Australian National University, 2004. / Title from PDF title page (viewed on July 2, 2005). Includes bibliographical references (p. 172-196).
4

Relação entre longevidade foliar, nitrogenio e compostos secundarios em folhas de leguminosas arboreas

Lima, Ana Lucia da Silva 04 July 2005 (has links)
Orientadores: Marlene Aparecida Schiavinato, Claudia Baptista Haddad / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-09-11T21:06:20Z (GMT). No. of bitstreams: 1 Lima_AnaLuciadaSilva_D.pdf: 355483 bytes, checksum: 9ce9e116731fc53ab23c70ac20c5cf48 (MD5) Previous issue date: 2005 / Resumo: A duração do ciclo de vida foliar determina características distintas nas folhas, que são relevantes para a sobrevivência da planta em diferentes habitats. Tem sido verificado que as espécies perenifólias apresentam mecanismos mais eficientes de conservação de nitrogênio (N) em relação às espécies decíduas. Esses mecanismos são: eficiência de reaproveitamento de nitrogênio (ERN), proficiência de reaproveitamento de nitrogênio (PRN) e eficiência do uso de nitrogênio (EUN). Segundo um dos paradigmas da ecologia vegetal, as espécies crescendo em ambientes oligotróficos têm maior eficiência de reaproveitamento de nutrientes em relação a espécies características de ambientes eutróficos. A PRN em espécies adaptadas a solos poço férteis é maior do que a de espécies de solos mais férteis. Plantas com longo ciclo de vida foliar possuem maior EUN do que plantas com folhas menos longevas e esta eficiência aumenta com o decréscimo da concentração de nutriente no solo. Espécies perenifólias apresentam maior longevidade foliar do que as decíduas e maior concentração de fenóis. Por outro lado, a concentração de taninos costuma ser maior nas folhas de espécies decíduas. É visto também que as espécies com folhas mais longevas possuem menor concentração de N total, menor concentração de compostos nitrogenados e maior massa foliar específica (MFE). O objetivo deste trabalho foi verificar se as observações encontradas na literatura, comparando espécies perenifólias e decíduas, aplicam-se também às espécies semidecíduas (Hymenaea courbaril - sem FSN e Lonchocarpus guilleminianus ¿ com FSN) e decíduas (Enterolobium contortisiliquum ¿ com FSN e Peltophorum dubium - sem FSN) encontrada em uma Mata Estacional Semidecídua remanescente da Mata Atlântica. As plantas foram cultivadas em casa de vegetação, em vasos contendo solo de local onde as espécies são encontradas na mata, enriquecido ou não com N. Plantas de H. courbaril e P. dubium também foram cultivadas em areia. Houve decréscimo na concentração de clorofila total com o avanço da idade foliar nas quatro espécies. As ERN, PRN e EUN decresceram com o aumento da concentração de N no solo. Espécies com FSN apresentaram menor ERN, PRN e EUN em relação às espécies sem FSN. Plantas cultivadas em areia tiveram maiores ERN, PRN e EUN. Os resultados mostraram uma relação inversa entre os parâmetros de ERN, PRN, EUN e presença de FSN e fertilidade do solo. Os resultados obtidos corroboram os da literatura, já que as espécies com folhas mais longevas apresentaram concentrações maiores de fenóis e maior MFE, menores de taninos, nitrato, proteínas, aminoácidos, clorofila e N total / Abstract: Depending on the leaf life span, the leaves show distinct characteristics, which are relevant to the survival of the plant in different habitats. It has been noticed that the evergreen species show more efficient mechanisms of Nitrogen (N) conservation. These mechanisms are related to N Resorption Efficiency (NRE), N Resorption Proficiency (NRP) and N Use Efficiency (NUE). According to one of the paradigms of plant ecology, species growing in oligotrophic environments are more efficient in nutrient resorption than species from eutrophic environments. It is well known that the NRP in species adapted to soils which are not very fertile, is higher than in species of fertile soils. Plants with long leaf life span have higher NUE than plants with shorter leaf life span and the NUE increases with the decrease of nutrient in the soil. Since the evergreen species present longer leaf life span than the deciduous, their leaves present higher concentration of phenolic compound. On the other hand, the concentration of tannins is usually higher in leaves of deciduous species. It is also known that the long leaf life species have lower concentration of nitrogen compounds and higher Specific Leaf Mass (SLM). The objective of this study was to verify if the observations found in literature, comparing evergreen species to deciduous species, are also applied to the semi deciduous species (Hymenaea courbaril - without SNF and Lonchocarpus guilleminianus ¿ with SNF) and deciduous species, (Enterolobium contortisiliquum ¿ with SNF and Peltophorum dubium - without SNF) of a semi deciduous tropical forest, remnant of the Atlantic Forest. The plants were grown in a greenhouse; in pots filled with soil from their natural environment, enriched or not with N. Plants of H. courbaril and P. dubium were also grown in sand. The results obtained confirm the observations cited in the literature, since the species with longer leaf life span presented higher SLM and concentrations of phenolic compounds, lower concentrations of tannins, nitrate, total proteins, total free amino acids, chlorophyll total), total N. There was a fall in the concentration of total chlorophyll with the advance of leaf age in the four species. The NRE, NRP and NUE decreased with the increase of N concentration in the soil. Species with SNF presented lower NRE, NRP and NUE if compared to species without SNF / Doutorado / Biologia Vegetal / Doutor em Biologia Vegetal
5

How do nitrogen-fixing trees influence the extent to which forests mitigate and exacerbate climate change?

Kou-Giesbrecht, Sian January 2021 (has links)
Nitrogen (N)-fixing trees can both mitigate climate change, by relieving N limitation of plant growth which promotes carbon dioxide (CO²) sequestration in plant biomass, and exacerbate climate change, by stimulating nitrification and denitrification which promotes nitrous oxide (N²O) emissions from soils. The balance between the negative radiative forcing (CO² sequestration in plant biomass) and positive radiative forcing (N²O emissions from soils) of N-fixing trees is unresolved. In this thesis I use a sequence of theoretical and empirical approaches to investigate the influence of N-fixing trees on CO² sequestration by forests and N²O emissions from forest soils, i.e., the net CO²-N²O effect of forests. The first chapter establishes a basis for the N²O effect of N-fixing trees with a meta-analysis, to accompany existing meta-analyses of the CO² effect of N-fixing trees. Chapter one demonstrates that N- fixing trees significantly increase N²O emissions from forest soils relative to non-fixing trees. The second chapter explores the controls and potential global importance of the net CO²-N²O effect of N-fixing trees using a theoretical ecosystem model. The third chapter explores the net CO²-N²O effect of N-fixing trees under manipulations of these controls with a field experiment paired with a modified version of the theoretical ecosystem model from the second chapter. Together, chapters two and three suggest that the net CO²-N²O effect of N-fixing trees is controlled by N limitation of plant growth and the extent to which N-fixing trees can regulate N fixation: N-fixing trees mitigate climate change relative to non-fixing trees under N limitation of plant growth, but N-fixing trees that cannot regulate N fixation exacerbate climate change relative to non-fixing trees under non-N limitation of plant growth. The fourth chapter represents the ecological mechanisms studied in chapters one, two and three in a land model: LM4.1-BNF is a novel representation of biological N fixation (BNF) and an updated representation of N cycling in the Geophysical Fluid Dynamics Laboratory Land Model 4.1 (LM4.1). LM4.1-BNF includes a mechanistic representation of asymbiotic BNF by soil microbes, the competitive dynamics between N-fixing and non-fixing plants, N limitation of plant growth, and N2O emissions from soils. Together these chapters elucidate the influence of N-fixing trees on the capacity of forests to mitigate and exacerbate climate change and establish a framework to analyse and project the trajectory of the net CO²-N²O effect of forests under global change.

Page generated in 0.0852 seconds