• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 182
  • 25
  • 18
  • 16
  • 11
  • 10
  • 8
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 360
  • 360
  • 105
  • 75
  • 70
  • 52
  • 51
  • 50
  • 47
  • 47
  • 46
  • 42
  • 41
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Podpůrný materiál pro výuku zaměřenou na NMR spektroskopii na středních školách / Support material for teaching NMR spectroscopy at secondary schools

Tomanová, Marie January 2013 (has links)
Nuclear magnetic resonance is an important, irreplaceable and very common method used in chemistry and medicine. From this perspective, it is highly desirable to implement NMR spectroscopy into high school education. But unfortunately there is not enough material in the Czech language, which would correspond to a high school student's level of knowledge. This thesis looks at creating support materials for teaching NMR spectroscopy and the possibilities of its implementation into high school education. For this purpose, following materials were prepared: an educational text, tests and a database of measured spectra (appendix on CD). Materials were tested in the form of a directed interview and then modified according to the results. This testing confirmed that the text is clear, motivating, and that this topic would be appreciated by both students and teachers. The materials will be available for teachers and high school students at the educational portal studiumchemie.cz. Powered by TCPDF (www.tcpdf.org)
252

Spektroskopické a teoretické studium supramolekulárních komplexů symetrických porfyrinů s chirálními guesty / Spektroskopické a teoretické studium supramolekulárních komplexů symetrických porfyrinů s chirálními guesty

Březina, Václav January 2014 (has links)
Certain types of porphyrins can be used as achiral agent for determination of enantiomeric excess (ee) of chiral molecules. Particular organic chiral molecule (guest) and porphyrin (host) form host-guest complex while inducing nonequiv- alency of particular proton resonances in symmetrical host. It causes splitting of NMR signals linearly dependent on ee of guest. In this work we investigated com- plexation of di-brombenzylated oxoporphyrin with chiral camphorsulfonic acid. NMR titration revealed that they form complex with 1:1 stoichiometry with as- sociation constant K ≈ 5 × 104 l/mol. We confirmed linear dependence of split- ting of host β-protons on ee of guest. Low temperature measurements revealed two conformations of host-guest complex with population around 0.7:0.3 (at −60 ◦ C). DFT quantum mechanical computations at BLYP/3-21G* level revealed also two conformations with population 0.79:0.21. NMR shifts were computed on this geometries with method GIAO/PBE1PBE/6-31G(2df,2pd) and compared to experimental values. 1
253

Redox-coupled Spin Transition in Co(2+/3+) Complexes with Triarylamine-substituted Polypyridyl-based Ligands

Schnaubelt, Linda 08 August 2019 (has links)
The present PhD thesis describes the synthesis and characterisation of Co(2+/3+) complexes with triarylamine-substituted polypyridyl-based ligands. A light- or temperature-induced intramolecular electron transfer between the Co and the triarylamine moieties was found in the tri-cationic complexes, which was examined with electrochemical measurements, DFT calculations, optical and dynamic 1H NMR spectroscopy. This process is coupled to a high-spin <--> low-spin transition on the metal. The emphasis of this PhD thesis was the adjustment of a redox equilibrium between the paramagnetic ([Co2+(L+)(L)]3+) and diamagnetic ([Co3+(L)2]3+) formulation (L = triarylaminedecorated ligands) via the electron transfer. The position of this equilibrium is influenced by the complexes' structure and environment. Constitutional changes in the ligand topology were performed to modify the electronic properties of the triarylamine substituents and to vary the distance between the redox centres, namely the Co ion and the triarylamine nitrogen atom. If they are located within their van-der-Waals radii, photochemical excitation of the diamagnetic ground state leads to the paramagnetic excited state. A temperature-dependent redox equilibrium was found with an increased distance between the redox centres (d = 8 Å), due to the different entropies of the redox isomers.
254

Importance of Molecular interactions to Design Non-ionic Coacervates for Drug Delivery Applications

Kundu, Mangaldeep January 2021 (has links)
No description available.
255

Příprava a charakterizace nanomateriálů obsahujících sloučeniny bóru / SYNTHESIS AND CHARACTERIZATION OF NANOMATERIALS CONTAINING BORON COMPOUNDS

Vrbata, David January 2021 (has links)
This thesis is focused on synthesis and polymerization of caprolactone and its derivatives by living ring opening polymerization (LROP), Self-assembly in aqueous solutions produced nanoaggregates comprised of amphiphilic block copolymers or telechelic polymers with incorporated boron compounds (phenyl boronic acids and boron clusters). Incorporation of boron compounds was facilitated either by covalent or non-covalent bonding. Obtained complex nanoparticle structures manifested stimuli-responsive behaviour and were investigated under varying conditions by combination of light scattering, fluorescence spectroscopy and electron microscopy. The obtained results on solution behaviour of polymers in combination with added value of boron compounds, yield general aspects of nano aggregate morphology, responsive character tuning and practical aspects of synthesis and self-assembly overcame in the preparation process. The publications wrote during this thesis are therefore adding valuable information to researchers engaged in biomedical utilization of such nano assemblies.
256

Structural Studies of Biomolecules by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy

Conroy, Daniel William 29 August 2019 (has links)
No description available.
257

Synthesis and Characterization of Free-acid Derivatives and Corresponding Ionomers of Poly(L-lactic acid)

Tommey, Tyler 25 August 2020 (has links)
No description available.
258

NMR Spectroscopic Investigation of Lanthanide, Actinide, and Selenium Containing Complexes Related to the Environment or Nuclear Waste Disposals

Kretzschmar, Jerome 27 May 2019 (has links)
The ultimate goal of this work is providing insights into fundamental (physico-) chemical (redox) behavior of hexavalent uranium (U(VI)), trivalent europium (Eu(III)) and selenium (Se), and upon their interaction with ubiquitous small biomolecules (in case of U(VI) and Eu(III)) or alkaline earth metal ions (in case of Se(IV) and Se(VI)) by application of Nuclear Magnetic Resonance (NMR) spectroscopy. NMR spectroscopy is a powerful method proving its usefulness also to environmental and nuclear waste related studies in aqueous solutions by determination of (potential) binding sites, molecular structures (even conformation and configuration) as well as intra- and intermolecular dynamics, (redox) reaction pathways and mechanisms. The present work comprises extensive NMR spectroscopic investigations in aqueous (D2O) solutions on (i) glutathione (GSH) and glutathione disulfide (GSSG) interactions with trivalent lanthanides (Ln(III), particularly Eu(III)) and U(VI), (ii) molecular structures of citrate (Cit) complexes of U(VI), and their reactions upon light-irradiation, as well as (iii) pH- and temperature-dependent speciation of selenium oxyanions, i.e., Se(VI) (selenate) and Se(IV) (selenite and, notably, hydrogen selenite) as well as Se(VI) and Se(IV) interaction with alkaline earth metal ions. These investigations are supported by time-resolved laser-induced fluorescence spectroscopy (TRLFS), ultraviolet-visible-near infrared (UV-Vis-NIR), IR/Raman, and extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy (TEM), as well as quantum chemical calculations on density functional theory (DFT) level. For NMR spectroscopic data on GSH/GSSG complexation towards both Eu(III) and U(VI) are lacking, the herein presented results are new, and nicely complement other spectroscopic studies. Ln(III) complexes of GSH are characterized by their high solubility at least up to 300 mM and pD 5. However, the formation constant of the Eu(III)–GSH 1:1 complex is quite low with log K = 1.71 ± 0.01 as determined by Eu(III)-TRLFS. The diamagnetic La(III) and Lu(III) showed only little effect on the NMR spectra (< 2 ppm) while analogous Eu(III) solutions revealed hyperfine shifts up to 40 ppm. Eu(III)-induced 1H chemical shift changes are solely upfield and attributed to be predominantly due to pseudocontact contribution caused by dipolar interaction. In contrast, Eu(III)-induced 13C chemical shift changes of adjacent atoms – at least for the carboxyl and α-carbons – show alternating signs, indicating spin polarization effects owing to contact contribution. As expected for hard LEWIS acids and shown by other spectroscopies, complexation facilitates by the carboxyl groups. Qualitative differences between the glutamyl and glycyl carboxylate in metal ion complexation are ascribed to COULOMB repulsion due to the positively charged NH3+ in direct vicinity. Investigations of the U(VI)–GSH system covered experiments under both oxidizing and reducing conditions, performed with GSH’s oxidized form, GSSG, at ambient conditions, while samples with reduced GSH were handled under N2 atmosphere. For either condition, U(VI) showed interaction in aqueous (D2O) solution with both GSH and GSSG as determined by U(VI)-induced 1H and 13C chemical shift changes and U(VI) TRLFS, the latter comprising measurements at 25 °C and –120 °C. In principle, the interactions are stronger as compared to the Ln(III) system, and the speciation in both solution and solid is more complex owing to the aqueous chemistry of uranium. Observed binary GSH complexes are [UO2(H2GSH)]2+ for pD values up to ≈ 2.3, and [UO2(HGSH)]+ predominating for pD > 2.3. Complementary to the Eu(III) results, whenever net neutral binary GSH/GSSG or ternary hydroxo GSH/GSSG U(VI) complexes form in solution, both these U(VI) systems revealed extensive precipitation because of the low solubility of these complexes. Binary U(VI) GSSG and ternary U(VI) hydroxo GSSG complexes yield solid phases from pD 2 through 8, even in carbonatic media. The largest quantities of aqueous GSSG–U(VI) complexes are observed for pD ≈ 3.5, with the association constant for pH 3 determined by TRLFS as log K = 4.81 ± 0.08 for a 1:1 complex. GSH cannot compete with hydroxo ligands for complexation as of pD 6, whereas GSSG can at least partially compete with hydroxo and carbonate ligands upon formation of both quaternary U(VI) hydroxo carbonate GSSG, and ternary U(VI) carbonate GSSG (poly-)anionic species of high solubility. Under reducing and near-neutral conditions (pD 6 – 9) GSH immediately reduced U(VI) with subsequent formation of nanocrystalline UO2+x. After centrifugation of the starting material and allowing the decanted supernatant to age, the dissolved nanocrystals assemble network-like as disclosed by TEM, and further analysed by selected-area electron diffraction (SAED), energy-dispersive X-ray (EDX) and UV-Vis spectroscopy, revealing hyper-stoichiometric UO2+x phases. Such network-like assembled actinide containing nanocrystals, with the arrangement most likely provoked by the presence of GSSG, have never been shown before. Complementary, the precipitate that has also been allowed to age as a wet paste, showed color changes from yellow via olive to black, indicating a reaction to proceed. The repeatedly probed and dissolved material exhibited GSSG in NMR spectra, and UV-Vis-NIR absorption bands attributed to U(IV) and, notably, U(V), the latter implying a one-electron transfer with subsequent disproportionation of U(V) to U(IV) and U(VI). Therefore, obtained results advance the understanding of both fundamental redox behavior of uranium and the role of GSH (and related molecules) in U(VI) detoxification processes in vivo. Although investigated for over 70 years, there are still controversial discussions on both speciation and structures of U(VI)–Cit complexes. By means of NMR’s strength in both structure determination and sensitivity to dynamic processes, studies regarding the U(VI)–Cit system allowed further fundamental insights into the structures of the formed complexes on a molecular level. Upon complexation a chiral center is induced in Cit’s central carbon, resulting in the formation of two diastereomeric pairs of enantiomers, whereupon the dimeric complexes exhibit syn and anti configured isomers. In fact, the combination of 17O NMR (note: at natural abundance) and quantum chemical calculations allowed an unambiguous decision on complex geometry and overall configurations. It is evidenced for the first time that the syn isomer is favored in aqueous solution in contrast to the preferably crystallizing anti isomer. Both isomers coexist and interconvert among one another, with a rate estimated to be in the order of 102 s–1 at 25 °C in acidic media, and a corresponding activation energy of approximately 60 kJ mol–1. Moreover, clear indications for uranium chirality is observed for U4+, with the 1:1 U(IV)–Cit complexes also forming two diastereomeric pairs of enantiomers. Comprehensive spectroscopic experiments combined with quantum chemical calculations improved basic understanding of the photo-reaction mechanism in the U(VI)–Cit system. Regardless of sample conditions, Cit is degraded to β-ketoglutarate, acetoacetate, and acetone, while U(VI) was reduced to U(IV) at pD 2 and U(V) at pD 5, suggesting a two- and a one-electron transfer, respectively. NMR signals observed for pD 5 samples at remarkable 1H chemical shift values between 25 and 53 ppm, in combination with UV-Vis-NIR absorptions at about 750 and 930 nm, are assigned to U(V) complexes of citrate. With regard to reported pH dependence on reaction rate and yield in the literature combined with observations in this work, H+/D+ are considered mechanistically crucial constituents. Furthermore, the photoreaction proceeds intermolecularly, requiring for free Cit to be present in solution. In consideration of both the U(VI)–Cit photoreaction and the U(VI)–GSH chemical redox reaction, regardless of the particular mechanism, in both cases the process is intermolecular. This is not only a highly interesting, but the more a very important result, rendering the reductants not required to be bound to U(VI) in order to reduce it. Owing to the suitability of 77Se as NMR-active but non-radioactive Se isotope, this spectroscopy was also applied to study chemical behavior of the nuclear waste related long-lived 79Se. For the first time spectroscopic evidence is given for hydrogen selenite dimerization in aqueous solution upon formation of homo-dimers by hydrogen bonding that are stable up to 60 °C and so are other selenium oxyanionic species. Additionally, a remarkably higher 77Se chemical shift temperature coefficient of the dimer – as compared to corresponding selenite and selenous acid – was found. These findings are attributed to a significant deshielding upon heating due to remarkably different rovibrational modes upon stretching the dimer as a whole instead of its dissociation into monomers owing to the rather strong hydrogen bonds. Interaction of selenium oxyanions with ubiquitous alkaline earth metals, i.e., Ca2+ and Mg2+, showed formation of weak aqueous complexes of both selenite and hydrogen selenite dimer for excessive selenium, however, at high ionic strength (5.6 M) for equimolar Ca2+ and Se(IV) even at pHc 5 crystalline calcium selenite is formed.
259

Synthesis, characterization, and photophysics of symmetric and unsymmetric -NHC pincer platinum halide complexes and derivatives

Zhang, Min 14 December 2018 (has links)
A series of 24 new photoluminescent symmetric and unsymmetric -NHC pincer Pt complexes was synthesized and characterized, including collection of their 195Pt NMR chemical shifts. In total 18 new X-ray crystal structures, and photophysical studies of these photoluminescent -NHC pincer Pt complexes are reported. -NHC pincer Pt complexes were synthesized and characterized using new -NHC pincer based proligands [(RChetChetCRH3)X2, X = Cl, Br, or BPh4, where het represents imidazolyl, benzimidazolyl, and 1,2,4-triazolyl moieties; R = n-butyl, 3,3-dimethylbutyl, n-hexyl] as starting materials. A new method to synthesize Pt-Cl complexes to prevent halogen mixing was developed using tetraphenylborate salts as proligands. -NHC pincer complexes Pt(II) were oxidized to Pt(IV) complexes by reaction with Br2, I2, or iodobenzene dichloride. Photophysical studies showed emission of blue to red-orange color range for the Pt(II) complexes when irradiated with long wavelength UV light (360 nm). No visible emission for Pt(IV) complexes was observed upon irradiation at 360 nm. The tunable photoluminescence of the synthesized -NHC pincer Pt(II) complexes can be used as the materials for OLEDs. Parameters and scales that provide understanding of steric and electronic effects are essential to predicting properties, and, therefore, to systematically designing new ligands. Meridional tridentate pincer ligands are neither conveniently nor accurately described by existing options. A scale has been developed based on 195Pt NMR chemical shift that is reflective of the total donor ability of a multi-dentate ligand in a square planar complex and that does not suffer from cis/trans stereochemical issues. This scale, Platinum Electronic Parameter (PtEP) and defined as PtEP = -(195Pt NMR shift) in CDCl3 revealed significant deviations of -NHC pincer ligands, PCP and POCOP donor abilities from predicted extrapolations using existing TEP parameters. This initial data set demonstrates the applicability and broad potential of the PtEP scale.
260

Aspects of the chemistry of 1,4-naphthoquinones. An investigation of nucleophilic substitution reactions of alkylamines and hydroxyalyklamines on 1,4 napthoquinones and the role of solvent on the position of substitution.

Mahmood, Tariq January 2012 (has links)
Nucleophilic substitution reactions of alkylamines, cyclic alkylamines, and hydroxyalkylamines with 5-substituted-1,4-naphthoquinones have been studied. It has been found that the nature of the solvent employed in the reaction influences the position of mono-substitution at either the 2- or 3-position. Although both regioisomers were produced in all the reactions, protic polar solvents favoured the formation of the 3-regioisomer, whereas non-protic solvents favoured the formation of the 2-regioisomer. It has also been found that formation of 2,3-diaminoalkyl derivatives is normally unlikely. A series of hydroxyalkylamino-1,4-naphthoquinones were also synthesised. The collision-induced dissociation mass spectra of protonated hydroxyalkylamino-1,4- naphthoquinones showed fragmentation patterns which were dependent on the nature and length of the side chain and the presence and nature of the adjacent group on the 3-position on the 1,4-naphthoquinone ring. A total of 27 novel compounds were synthesised during the course of this research, the structures of which were confirmed via 1D and 2D NMR spectroscopy, mass spectrometry (ESI), IR spectroscopy and high resolution mass spectrometry (HRESIMS and HREIMS).

Page generated in 0.0471 seconds