• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développements combinatoires autour des tableaux et des nombres eulériens / Combinatorial developments on tableaux and eulerian numbers

Chemli, Zakaria 31 March 2017 (has links)
Cette thèse se situe au carrefour de la combinatoire énumérative, algébrique et bijective. Elle se consacre d’une part à traduire des problèmes algébriques en des problèmes combinatoires, et inversement, utilise le formalisme algébrique pour traiter des questions combinatoires.Après un rappel des notions classiques de combinatoire et de structures algébriques, nous abordons l’étude des tableaux de dominos décalés, qui sont des objets combinatoires définis dans le but de mieux comprendre la combinatoire des fonctions symétriques P et Q de Schur. Nous donnons la définition de ces tableaux et nous démontrons qu'ils sont en bijection avec les paires de tableaux de Young décalés. Cette bijection nous permet de voir ces objets comme des éléments du super monoïde plaxique décalé, qui est l'analogue décalé du super monoïde plaxique de Carré et Leclerc. Nous montrons aussi que ces tableaux décrivent un produit de deux fonctions P de Schur et en prenant un autre type de tableaux de dominos décalés, nous décrivons un produit de deux fonctions Q de Schur. Nous proposons aussi deux algorithmes d'insertion pour les tableaux de dominos décalés, analogues aux algorithmes d'insertion mixte et d'insertion gauche-droit de Haiman. Toujours dans le domaine de la combinatoire bijective, nous nous intéressons dans la deuxième partie de notre travail à des bijections en lien avec des statistiques sur les permutations et les nombres eulériens.Dans cette deuxième partie de thèse, nous introduisons l'unimodalité des suites finies associées aux différentes directions dans le triangle eulérien. Nous donnons dans un premier temps une interprétation combinatoire ainsi que la relation de récurrence des suites associées à la direction (1,t) dans le triangle eulérien, où t≥1. Ces suites sont les coefficients de polynômes appelés les polynômes eulériens avec succession d'ordre t, qui généralisent les polynômes eulériens. Nous démontrons par une bijection entre les permutations et des chemins nord-est étiquetés que ces suites sont log-concaves et donc unimodales. Puis nous prouvons que les suites associées aux directions (r,q), où r est un entier positif et q est un entier, tel que r+q≥0, sont aussi log-concaves et donc unimodales / This thesis is at the crossroads of enumerative, algebraic and bijective combinatorics. It studies some algebraic problems from a combinatorial point of view, and conversely, uses algebraic formalism to deal with combinatorial questions.After a reminder about classical notions of combinatoics and algebraic structures, We introduce new combinatorial objects called the shifted domino tableaux, these objects can be seen as a shifted analog of domino tableaux or as an extension of shifted Young tableaux. We prove that these objects are in bijection with pairs of shifted Young tableaux. This bijection shows that shifted domino tableaux can be seen as elements of the super shifted plactic monoid, which is the shifted analog of the super plactic monoid. We also show that the sum over all shifted domino tableaux of a fixed shape describe a product of two P-Schur functions, and by taking a different kind of shifted domino tableaux we describe a product of two Q-Schur functions. We also propose two insertion algorithms for shifted domino tablaux, analogous to Haiman's left-right and mixed insertion algorithms. Still in the field of bijective combinatorics, we are interested in the second part of our work with bijections related to statistics on permutations and Eulerian numbers.In this second part of this thesis, we introduce the unimodality of finite sequences associated to different directions in the Eulerian triangle. We first give a combinatorial interpretations as well as recurrence relations of sequences associated with the direction (1, t) in the Eulerian triangle, where t≥1. These sequences are the coefficients of polynomials called the t-successive eulerian polynomials, which generalize the eulerian polynomials. We prove using a bijection between premutations and north-east lattice paths that those sequences are unomodal. Then we prove that the sequences associated with the directions (r, q), where r is a positive integer and q is an integer such that r + q ≥ 0, are also log-concave and therefore unimodal
2

Études combinatoires sur les permutations et partitions d'ensemble

Kasraoui, Anisse 12 March 2009 (has links) (PDF)
Cette thèse regroupe plusieurs travaux de combinatoire énumérative sur les permutations et permutations d'ensemble. Elle comporte 4 parties.Dans la première partie, nous répondons aux conjectures de Steingrimsson sur les partitions ordonnées d'ensemble. Plus précisément, nous montrons que les statistiques de Steingrimsson sur les partitions ordonnées d'ensemble ont la distribution euler-mahonienne. Dans la deuxième partie, nous introduisons et étudions une nouvelle classe de statistiques sur les mots : les statistiques "maj-inv". Ces dernières sont des interpolations graphiques des célèbres statistiques "indice majeur" et "nombre d'inversions". Dans la troisième partie, nous montrons que la distribution conjointe des statistiques"nombre de croisements" et "nombre d'imbrications" sur les partitions d'ensemble est symétrique. Nous étendrons aussi ce dernier résultat dans le cadre beaucoup plus large des 01-remplissages de "polyominoes lunaires".La quatrième et dernière partie est consacrée à l'étude combinatoire des q-polynômes de Laguerre d'Al-Salam-Chihara. Nous donnerons une interprétation combinatoire de la suite de moments et des coefficients de linéarisations de ces polynômes.
3

Études combinatoires sur les permutations et partitions d'ensemble / Combinatorial studies on set partitions and permutations

Kasraoui, Anisse 12 March 2009 (has links)
Cette thèse regroupe plusieurs travaux de combinatoire énumérative sur les permutations et permutations d'ensemble. Elle comporte 4 parties.Dans la première partie, nous répondons aux conjectures de Steingrimsson sur les partitions ordonnées d'ensemble. Plus précisément, nous montrons que les statistiques de Steingrimsson sur les partitions ordonnées d'ensemble ont la distribution euler-mahonienne. Dans la deuxième partie, nous introduisons et étudions une nouvelle classe de statistiques sur les mots : les statistiques "maj-inv". Ces dernières sont des interpolations graphiques des célèbres statistiques "indice majeur" et "nombre d'inversions". Dans la troisième partie, nous montrons que la distribution conjointe des statistiques"nombre de croisements" et "nombre d'imbrications" sur les partitions d'ensemble est symétrique. Nous étendrons aussi ce dernier résultat dans le cadre beaucoup plus large des 01-remplissages de "polyominoes lunaires".La quatrième et dernière partie est consacrée à l'étude combinatoire des q-polynômes de Laguerre d'Al-Salam-Chihara. Nous donnerons une interprétation combinatoire de la suite de moments et des coefficients de linéarisations de ces polynômes. / This thesis consists of four chapters, each on a different topic in enumerative combinatorics, all related in some way to the enumeration of permutations or set partitions. In the first chapter, we prove and generalize Steingrimsson's conjectures on Euler-Mahonian statistics on ordered set partitions. In the second chapter, we introduce and study a new class of statistics on words: the "maj-inv" statistics. These are graphical interpolation of the well-known "major index" and "inversion number".In the third chapter, we show that the joint distribution of the numbers of crossings and nestings on set partitions is symmetric. We also put this result in the larger context of enumeration of increasing and decreasing chains in 01-fillings of moon polyominoes.In the last chapter, we decribe various aspects of the Al-Salam-Chihara q-Laguerre polynomials. These include combinatorial descriptions of the polynomials, the moments, the orthogonality relation and a combinatorial interpretation of the linearization coefficients.

Page generated in 0.0457 seconds