• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formes quadratiques ternaires représantant tous les entiers impairs

Bujold, Crystel 11 1900 (has links)
Les calculs numériques ont été effectués à l'aide du logiciel SAGE. / En 1993, Conway et Schneeberger fournirent un critère simple permettant de déterminer si une forme quadratique donnée représente tous les entiers positifs ; le théorème des 15. Dans ce mémoire, nous nous intéressons à un problème analogue, soit la recherche d’un critère similaire permettant de détecter si une forme quadratique en trois variables représente tous les entiers impairs. On débute donc par une introduction générale à la théorie des formes quadratiques, notamment en deux variables, puis on expose différents points de vue sous lesquels on peut les considérer. On décrit ensuite le théorème des 15 et ses généralisations, en soulignant les techniques utilisées dans la preuve de Bhargava. Enfin, on démontre deux théorèmes qui fournissent des critères permettant de déterminer si une forme quadratique ternaire représente tous les entiers impairs. / In 1993, Conway and Schneeberger gave a simple criterion allowing one to determine whether a given quadratic form represents all positive integers ; the 15-theorem. In this thesis, we investigate an analogous problem, that is the search for a similar criterion allowing one to detect if a quadratic form in three variables represents all odd integers. We start with a general introduction to the theory of quadratic forms, namely in two variables, then, we expose different points of view under which quadratic forms can be considered. We then describe the 15-theorem and its generalizations, with a particular emphasis on the techniques used in Bhargava’s proof of the theorem. Finally, we give a proof of two theorems which provide a criteria to determine whether a ternary quadratic form represents all odd integers.
2

Formes quadratiques ternaires représantant tous les entiers impairs

Bujold, Crystel 11 1900 (has links)
En 1993, Conway et Schneeberger fournirent un critère simple permettant de déterminer si une forme quadratique donnée représente tous les entiers positifs ; le théorème des 15. Dans ce mémoire, nous nous intéressons à un problème analogue, soit la recherche d’un critère similaire permettant de détecter si une forme quadratique en trois variables représente tous les entiers impairs. On débute donc par une introduction générale à la théorie des formes quadratiques, notamment en deux variables, puis on expose différents points de vue sous lesquels on peut les considérer. On décrit ensuite le théorème des 15 et ses généralisations, en soulignant les techniques utilisées dans la preuve de Bhargava. Enfin, on démontre deux théorèmes qui fournissent des critères permettant de déterminer si une forme quadratique ternaire représente tous les entiers impairs. / In 1993, Conway and Schneeberger gave a simple criterion allowing one to determine whether a given quadratic form represents all positive integers ; the 15-theorem. In this thesis, we investigate an analogous problem, that is the search for a similar criterion allowing one to detect if a quadratic form in three variables represents all odd integers. We start with a general introduction to the theory of quadratic forms, namely in two variables, then, we expose different points of view under which quadratic forms can be considered. We then describe the 15-theorem and its generalizations, with a particular emphasis on the techniques used in Bhargava’s proof of the theorem. Finally, we give a proof of two theorems which provide a criteria to determine whether a ternary quadratic form represents all odd integers. / Les calculs numériques ont été effectués à l'aide du logiciel SAGE.

Page generated in 0.0428 seconds