• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fade countermeasure modelling for Ka band digital satellite links

Gremont, Boris Christian January 1997 (has links)
This thesis investigates the modelling of fade countermeasures (FCMs) for the design of geostationary Ka band digital satellite communication systems. The analysis focuses on a typical low-power low-rate very small aperture terminal application using adaptive forward error correction as a way of counteracting the high level of detected dynamic atmospheric fading. The management and performance of such systems is conditioned greatly by the ability of practical controllers at detecting the actual level of total signal attenuation. At 20 or 30 GHz, rain attenuation and tropospheric scintillation are the two major propagation effects of interest. Part of the solution relies on the consideration and integration of their random and dynamic nature in the design process. The finite response time of practical countermeasure systems is a source of performance degradation which can be minimised by the implementation of predictive control strategies. This is the focal point of this thesis. A novel on-line short-term predictor matched to the Ka band fading process is proposed. While the rain attenuation component is efficiently predicted, tropospheric scintillation is the source of the estimation error. To take this into account, a statistical model, based on an extension of the global fading model for rain and scintillation, is then developed so that long term performance of predictive countermeasures can be drawn. Two possible ways to compensate for scintillation-induced prediction errors, namely the fixed and variable detection margin approaches, are proposed, analysed and then compared. This is achieved by calculating the FCM utilisation factor, as well as the throughput and bit error rate performance of a typical Ka band system in the presence of dynamic fading within the context of predictive fade countermeasure control operations. In the last part of this thesis, the inclusion of instantaneous frequency scaling in the design of efficient FCM control schemes is investigated. This is applicable to systems using fade detection at a base frequency. In particular, a new statistical model, accounting for the impact of the stochastic temporal variations of rain drop size distribution on rain attenuation, is presented. This thesis further confirms that countermeasure systems are technologically viable. The consideration of more specific design problems does not change the overall validity of this statement. In this thesis, it is shown that a predictive FCM technique, based on readily available punctured convolutional codes, with their relatively modest coding gain, is sufficient to provide high link availability and user data throughput on a low-power low-rate in-bound VSAT link.
12

[pt] DETERMINAÇÃO DO COMPORTAMENTO ESTATÍSTICO DE INTERFERÊNCIAS ENVOLVENDO REDES DE COMUNICAÇÕES QUE UTILIZAM SATÉLITES NÃO GEOESTACIONÁRIOS: IMPLEMENTAÇÃO NUMÉRICA DO MÉTODO ANALÍTICO / [en] DETERMINING THE STATISTICAL BEHAVIOR OF THE INTERFERENCE GENERATED BY SATELLITE NETWORKS THAT USE NON-GEOSTATIONARY SATELLITE: NUMERICAL IMPLEMENTATION OF THE ANALYTIC METHOD

JORGE EDUARDO AMORES MALDONADO 23 November 2005 (has links)
[pt] Este trabalho apresenta a descrição e implementação numérica do Método Analítico que determina a interferência em ambientes que envolvem redes de satélites não geoestacionários. Este método está baseado no conhecimento da função densidade de probabilidade (pdf) da posição de um satélite localizado numa órbita elíptica (ou circular) ao redor da Terra. Esta função densidade de probabilidade é utilizada para calcular as interferências produzidas ou experimentadas por elementos de redes NGSO assim como por elementos de outros tipos de redes de telecomunicações (serviço fixo terrestre, redes que utilizam satélites geoestacionários, entre outras). Comparado com os métodos baseados em simulação, é importante ressaltar que o método analítico equivale a uma simulação de tempo infinito, e portanto, não apresenta os problemas de confiabilidade associados com os métodos de simulação. / [en] This thesis presents the numerical algorithm description for the implementation of the analytical approach to assess interference in environments involving NGSO satellite networks proposed in [1]. For completeness purposes it also included to analyze the interference sensitivity to system and network parameters without the reliability problems and the excessive computer effort, often associated with direct computer simulation methods. The Analytical Approach is based on the knowledge of the probability density function (pdf) of the position of a single satellite placed in an elliptical (or circular) orbit around the Earth. This pdf is used to calculate the statistical behavior of interferences produced (or experimented) by NGSO network elements, as well as by elements of other types of telecommunications networks (fixed terrestrial Services, Fixed Satellite Services, among others). To illustrate the applicability of the method several results are presented, each one performed with different parameters and environments. It is worth pointing out that compared with direct computer simulaton methods, the Analytical one generates more reliable and precise results with less required computer time.
13

Demographically weighted traffic flow models for adaptive routing in packet-switched non-geostationary satellite meshed networks

Mohorcic, M., Svigelj, A., Kandus, G., Hu, Yim Fun, Sheriff, Ray E. January 2003 (has links)
no / In this paper, a performance analysis of adaptive routing is presented for packet-switched inter-satellite link (ISL)networks, based on shortest path routing and two alternate link routing forwarding policies. The selected routing algorithm and link-cost function are evaluated for a low earth orbit satellite system, using a demographically weighted traffic flow model. Two distinct traffic flow patterns are modelled: hot spot and regional. Performance analysis, in terms of quality of service and quantity of service, is derived using specifically developed simulation software to model the ISL network, taking into account topology adaptive routing only, or topology and traffic adaptive routing.
14

A high gain tri-reflector antenna configuration for beam scanning

Werntz, Paul C. 11 July 2007 (has links)
High resolution earth observation from geostationary orbit offers several advantages compared to traditional low earth orbit systems. Among the advantages are decreased time to scan the visible geo-disk and the ability to stare at a particular event. The following work is concerned with the design of a reflector antenna configuration for passive remote sensing and suitable for use on a geostationary platform; however, the resultant configuration is not limited to this application. The specific goal is the design of a reflector antenna configuration capable of precision beam scanning over a range of several degrees in all directions while minimizing vibration and inertial torque such as to have minimal effect on the other instruments sharing the platform. Desirable characteristics of such a reflector configuration are: a stationary feed consisting of a single element or a small array; simple reflector motions; and high primary aperture utilization for all scan directions (high illumination efficiency). This dissertation documents the development of a novel tri-reflector antenna configuration which addresses the design goals outlined above. The reflector configuration has been named the conjugate tri-reflector. The conjugate tri-reflector consists of a parabolic primary reflector an elliptical secondary reflector and a shaped tertiary reflector. Beam scanning is performed entirely by motion of the relatively small tertiary reflector. The proposed reflector configuration offers substantial improvement in scan performance compared to that achieved by feed displacement with a prime focus parabolic reflector and has a much higher aperture efficiency than comparable spherical reflector configurations. / Ph. D.
15

Cross-layer design applied to small satellites for data collection / Conception cross-layer d’une architecture de collecte de données pour petits satellites à défilement

Almonacid Zamora, Vicente 28 November 2017 (has links)
Avec l'introduction des plate-formes CubeSat, le nombre de petits satellites lancés dans l'espace a grandi de manière importante pendant les deux dernières décennies.Étant développés initialement par des universités et des centres de recherche pour des simples tests technologiques ou des expériences académiques, ces plate-formes aujourd'hui permettent d'envisager de nouvelles applications et services.Dans cette thèse, nous nous intéressons à l'usage de petits satellites à défilement pour des réseaux globaux de collecte de données et, plus généralement, pour des applications de type machine-to-machine (M2M).En raison des contraintes existantes tant au segment sol comme au segment spatial, la capacité du canal de transmission est fortement limitée---notamment celle du lien montant, qui correspond à un canal à accès multiple.Ces réseaux sont aussi caractérisés par des très petits messages arrivant au système de manière imprévisible, ce qui implique que toute redondance liée au protocole a un impact important sur l’efficacité spectrale. Ainsi, des méthodes d'accès aléatoires sont souvent préférés pour le lien montant.Relever ces défis nécessite d'aborder l'optimisation de la transmission de manière holistique. Plus spécifiquement, la conception des couches physiques (PHY) et de contrôle d'accès au support (MAC, de l'anglais Media Access Control) doit être menée de manière conjointe.Les principales contributions de cette thèse portent sur l'étude du protocole Time-- and Frequency--Asynchronous ALOHA (TFAA), une technique d'accès aléatoire utilisée dans des réseaux terrestres à modulation de bande étroite. En réduisant significativement le débit binaire de transmission, TFAA permet notamment d'établir des liaisons à longue portée et/ou à faible consommation énergétique, dont des systèmes M2M par satellite sont un exemple.D'abord, nous évaluons les performances au niveau MAC (i.e., le taux d'utilisation de canal et la probabilité d'erreur de packet) sous trois différents modèles de réception: le modèle de collisions, le modèle de capture et un modèle plus détaillé qui prend en compte les paramètres de la couche PHY.À partir de ce dernier modèle, nous étudions ensuite l'impact de certains paramètres de la couche PHY sur les performances au niveau MAC.Afin d'améliorer la performance de TFAA, nous proposons Contention Resolution Time-- and Frequency--Asynchronous ALOHA (CR-TFAA), une solution plus sophistiquée intégrant des techniques de suppressions successives d'interférences.Enfin, nous étudions les bénéfices obtenus en exploitant le compromis <<performance--délai de bout-en-bout>> en utilisant des techniques simples telles qu'un système de contrôle de transmission et le codage au niveau packet. / With the introduction of the CubeSat standard, the number of small-satellite missions has increased dramatically over the last two decades.Initially developed by universities and research centres for technology validation and academic experiments, these low-cost platforms currently allow to perform a variety of advanced, novel applications.In this thesis we are interested in the use of small satellites for global data collection and, more generally, for Internet of Things (IoT) and machine-to-machine (M2M) applications.Since both the space and ground segments are subject to stringent constraints in terms of size and mass, the overall capacity of the communications channel is highly limited, specially that of the uplink, which is a multi-access channel.These systems are also characterised by bursty, short messages, meaning that any protocol overhead may have a significant impact on the bandwidth efficiency. Hence, a random access approach is usually adopted for the uplink.Facing these challenges requires to optimize the communication system by taking an holistic approach. In particular, a joint design of both the physical (PHY) and Medium Access Control (MAC) layers is needed.The main contributions of this thesis are related to the study of Time-- and Frequency--Asynchronous ALOHA (TFAA), a random access approach adopted in terrestrial ultra narrowband (UNB) networks. By trading data rate for communication range or transmission power, TFAA is particularly attractive in power constrained applications such as low power wide area networks and M2M over satellite. First, we evaluate its MAC performance (i.e., its throughput and packet error rate) under three different reception models: the collision channel, the capture channel and a more detailed model that takes into account the PHY layer design.Then, we study the impact of PHY layer parameters, such as forward error correction (FEC), pulse shaping filter and modulation order, on the MAC performance.We show that, due to the characteristics of the multiple access interference, significant improvements can be obtained by applying low-rate FEC.To further improve TFAA's performance, we propose Contention Resolution Time-- and Frequency--Asynchronous ALOHA (CR-TFAA), a more advanced design which is in line with recent developments such as Asynchronous Contention Resolution Diversity ALOHA (ACRDA).Under the same set of hypothesis, we see that CR-TFAA provides similar and even better performance than ACRDA, with a decrease in the packet error rate of at least one order of magnitude.Finally, we study the benefits that can be obtained by trading delay for MAC performance and energy efficiency, using simple techniques such as transmission control and packet-layer erasure coding.
16

A Performance Analysis of TCP and STP Implementations and Proposals for New QoS Classes for TCP/IP

Holl, David J. 01 May 2003 (has links)
With a new United States Army initiative to exploit commercially developed information technology, there is a heightened interest in using Internet protocols over the military's geosynchronous satellite links. TCP is the dominant Internet protocol used for reliable data exchange, but its own design limits performance when used over long delay network links such as satellites. Initially this research set out to compare TCP with another proposed protocol, the Satellite Transport Protocol (STP). However through a series of tests, we found that STP does not fulfill its claims of increased throughput over TCP and uncovered a flaw in STP's founding research. In addition, this thesis proposes and demonstrates novel performance enhancing techniques that significantly improve transport protocol throughput.
17

[en] ON THE PROTECTION OF FIXED SERVICE RECEIVERS FROM THE INTERFERENCE GENERATED BY NON-GSO SATELLITE SYSTEMS OPERATING IN THE 3.7-4.2 GHZ BAND / [pt] PROTEÇÃO DE RECEPTORES DO SERVIÇO FIXO TERRESTRE DAS INTERFERÊNCIAS GERADAS POR SISTEMAS NÃO-GEO OPERANDO NA FAIXA DE 3.7-4.2 GHZ

ISABELA CUNHA MAIA NOBRE 17 November 2017 (has links)
[pt] Neste trabalho, os limites atuais de densidade de fluxo de potência do Artigo 21 do Regulamento de Radiocomunicações da UIT para sistemas não-GEO operando na banda 3.7-4.2 GHz são analizados. Estes limtes visam proteger os receptores do Serviço Fixo Terrestre, operando na mesma faixa de frequência, das interferências produzidas por sistemas de satélites não geoestacionários. A análise foi motivada pela Resolução 157 [1] da Conferência Mundial de Radiocomunicações de 2015, que reconheceu a necessidade de uma revisão do Artigo 21 para que sistemas não-GEO possam operar nestas faixas de frequências assegurando, ao mesmo tempo, que os serviços primários existentes continuem protegidos. Na análise, cinco estruturas de constelações de satélites não-GEO do tipo Walker Delta, adequadamente escolhidas, foram consideradas. Resultados mostraram que os atuais limtes de pfd podem impor restrições indevidas aos sistemas não-GEO operando nesta faixa. Assim, uma metodologia para investigar uma máscara limitante de pfd mais adequada é apresentada. A aplicação desta metodologia leva a uma máscara alternativa que se aproxima dos limites atuais de pfd para satélites geoestacionários quando o número de satélites no sistema interferente não-GEO é igual a um. Uma avaliação da máscara de pfd proposta mostra que ela não impõe restrições desnecessárias aos sistemas de satélites não-GEO. Isto, junto a outros fatos, indica que os limites de pfd propostos são, de fato, muito mais adequados do que os atuais. / [en] In this work, the current power-flux density limits in Article 21 of the ITU-R Radio Regulations for non-GSO systems operating in the 3.7-4.2 GHz band are analyzed. These limits aim the protection of Fixed Service receivers, operating in the same frequency band, from the interference produced by non-GSO satellite systems. The analysis was motivated by Resolution 157 [1] of the World Radiocommunication Conference 2015, that recognized the need for a revision of Article 21 with a view to enabling non-GSO systems to operate in these FSS frequency bands while ensuring that existing primary services are protected. In the analysis, five different Walker Delta type satellite constellation structures, adequately chosen, were considered. Results have shown that the current pfd limits may impose undue constraints to non-GSO systems operating in this band. Therefore, a methodology to investigate a more adequate pfd limiting mask is presented. The application of this methodology leads to an alternative mask that approaches the current pfd limits for the geostationary satellites when the number of satellites in the non-GSO interfering system is equal to one. An evaluation of the proposed pfd mask shows that it does not impose unnecessary constraints to the non-GSO satellite systems. This, along with other facts, indicates that the proposed pfd limits are, indeed, much more adequate than the current ones.

Page generated in 0.1571 seconds