• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cerebral blood flow in the non-human primate : an in vivo model and drug interventions / Douglas W. Oliver

Oliver, Douglas William January 2003 (has links)
Cerebral blood flow dynamics is an essential component for preserving cerebral integrity. Cerebral blood flow abnormalities are often seen in patients with central nervous system pathologies such as epilepsy, migraine, Alzheimer's Disease, vascular dementia, stroke, and even HIV/AIDS. There is increasing clinical and experimental evidence implicating cerebral hypoperfusion during ageing. The determination of cerebral perfusion has therefore become an important objective in physiological, pathological, pharmacological, and clinical investigations. The knowledge of regional cerebral blood flow further provides useful diagnostic information and/or data for a better understanding of the complex clinical presentations in patients with neurological and psychiatric disorders. Several cerebrovasoactive drugs have found application in the clinical setting of cerebrovascular diseases such as migraine and dementia. Due to the similarities between humans and non-human primates with respect to their brains, both structurally and behaviourally, numerous studies have been conducted and several non-human primate models have been developed for physiological, pathological, pharmacological, and clinical studies, amongst others in Parkinson's disease and diabetes. The relatively large size of the Cape baboon Papio Ursinus with a weight of 27-30 kg for a large male, makes this primate especially suitable for in vivo brain studies using radiotracers and Single Photon Emission Computed Tomography (SPECT). The main aim of the current study was therefore to develop a suitable radiotracer (99m Tc-hexamethylpropylene amine oxime (HMPAO) or 99m Tc_ethyl_cysteinatedimer (ECD) or 123l-iodoamphetamine (IMP)) for adapted in vivo cerebral blood flow measurements in a non-human primate (Papio ursinus) as an investigative model. The model was to be validated and applied in various drug studies for the evaluation of pharmacological interventions. The study design made use of split-dose methodology, whereby the radiopharmaceutical (radiotracer) was administered twice during each study. The first administration was injected soon after the induction of the anaesthesia, and was followed by the first SPECT data acquisition. The second administration of the radioligand, a double dose of radioactivity with respect to the first radioligand injection, was done at a specific time during the study, which took into account the pharmacodynamics of the drug. A second SPECT data acquisition followed subsequently. The drugs that were included in the study were acetazolamide, a carbonic acid anhydrase inhibitor (often used in nuclear medicine to determine cerebral reserve); sumaptriptan, a 5-HT (serotonin) agonist used for treatment of migraine; sodium valproate (an anti-epileptic drug); nimodipine, a calcium channel blocker and nitro-glycerine, a vasodilator used for angina. Arterial blood pressures were recorded from a catheter in the femoral artery and heart rates were concurrently monitored. The split-dose method was successfully applied to develop a non-human primate cerebral blood flow model under anaesthesia. The model showed differences in cerebral perfusion of the different anaesthesia regimes. These anaesthesia data sets were suitable as control/baseline results for drug intervention studies. Acetazolamide evaluation through the split-dose method in the baboon confirmed the sensitivity of the model by presenting comparable perfusion. This result compared to those already familiar prompted the model to be applied in pharmacological intervention studies. Subsequent results of these investigations showed increases in perfusion for single drug nimodipine treatment (25%). However, nimodipine attenuated the increases in perfusion when administered in combination with acetazolamide. Sumatriptan was able to decrease and normalise the increased perfusion after long duration anaesthesia. Decreased cerebral blood flow was observed for combinations of nimodipine with sodium valproate suggesting drug-drug interaction with important clinical implications. Similar decreases were found also for sumatriptan and nitro-glycerine when administered in combination with nimodipine. Studies with the various tracers (99m Tc_HMPAO or 99m Tc_ECD or 123l_IMP) showed clear differences in the perfusion data, confirming variation in the biochemical performance of the tracers. These differences, if not taken into consideration, caution for inappropriate clinical conclusions and subsequent erroneous therapeutic decisions. Improvement of radiotracer efficacy was subsequently attempted through application of the cyclodextrine complexation approach. Although cyciodextrine technology did not markedly improve the brain disposition of the 99m Tc-ECD, protection of the tracer against degradation was demonstrated. This study encouraged further exploration of this method for protection of the tracer against chemical and metabolic degradation. The current study was aimed to develop and effectively apply a non-human primate model with nuclear medicine technology for cerebral blood flow determinations after pharmacological interventions. This was achieved through the split-dose method and dedicated computer programming, which yielded a successful model with the non-human primate under anaesthesia. The model was validated with the application of acetazolamide to confirm familiar cerebrovascular reserve results, indicating that the model is sensitive to CBF changes. The model was also effectively applied in several pharmacological intervention studies, whereby cerebropharmacodynamics of selected drugs were investigated and established. This unique model of a non-human primate, Papio ursinus for cerebral blood flow determinations has served pharmacological research successfully during the past 12 years and could do so in the future, with scope to investigate new frontiers with improved technologies. / Thesis (Ph.D. (Pharmacology))--North-West University, Potchefstroom Campus, 2004.
2

Cerebral blood flow in the non-human primate : an in vivo model and drug interventions / Douglas W. Oliver

Oliver, Douglas William January 2003 (has links)
Cerebral blood flow dynamics is an essential component for preserving cerebral integrity. Cerebral blood flow abnormalities are often seen in patients with central nervous system pathologies such as epilepsy, migraine, Alzheimer's Disease, vascular dementia, stroke, and even HIV/AIDS. There is increasing clinical and experimental evidence implicating cerebral hypoperfusion during ageing. The determination of cerebral perfusion has therefore become an important objective in physiological, pathological, pharmacological, and clinical investigations. The knowledge of regional cerebral blood flow further provides useful diagnostic information and/or data for a better understanding of the complex clinical presentations in patients with neurological and psychiatric disorders. Several cerebrovasoactive drugs have found application in the clinical setting of cerebrovascular diseases such as migraine and dementia. Due to the similarities between humans and non-human primates with respect to their brains, both structurally and behaviourally, numerous studies have been conducted and several non-human primate models have been developed for physiological, pathological, pharmacological, and clinical studies, amongst others in Parkinson's disease and diabetes. The relatively large size of the Cape baboon Papio Ursinus with a weight of 27-30 kg for a large male, makes this primate especially suitable for in vivo brain studies using radiotracers and Single Photon Emission Computed Tomography (SPECT). The main aim of the current study was therefore to develop a suitable radiotracer (99m Tc-hexamethylpropylene amine oxime (HMPAO) or 99m Tc_ethyl_cysteinatedimer (ECD) or 123l-iodoamphetamine (IMP)) for adapted in vivo cerebral blood flow measurements in a non-human primate (Papio ursinus) as an investigative model. The model was to be validated and applied in various drug studies for the evaluation of pharmacological interventions. The study design made use of split-dose methodology, whereby the radiopharmaceutical (radiotracer) was administered twice during each study. The first administration was injected soon after the induction of the anaesthesia, and was followed by the first SPECT data acquisition. The second administration of the radioligand, a double dose of radioactivity with respect to the first radioligand injection, was done at a specific time during the study, which took into account the pharmacodynamics of the drug. A second SPECT data acquisition followed subsequently. The drugs that were included in the study were acetazolamide, a carbonic acid anhydrase inhibitor (often used in nuclear medicine to determine cerebral reserve); sumaptriptan, a 5-HT (serotonin) agonist used for treatment of migraine; sodium valproate (an anti-epileptic drug); nimodipine, a calcium channel blocker and nitro-glycerine, a vasodilator used for angina. Arterial blood pressures were recorded from a catheter in the femoral artery and heart rates were concurrently monitored. The split-dose method was successfully applied to develop a non-human primate cerebral blood flow model under anaesthesia. The model showed differences in cerebral perfusion of the different anaesthesia regimes. These anaesthesia data sets were suitable as control/baseline results for drug intervention studies. Acetazolamide evaluation through the split-dose method in the baboon confirmed the sensitivity of the model by presenting comparable perfusion. This result compared to those already familiar prompted the model to be applied in pharmacological intervention studies. Subsequent results of these investigations showed increases in perfusion for single drug nimodipine treatment (25%). However, nimodipine attenuated the increases in perfusion when administered in combination with acetazolamide. Sumatriptan was able to decrease and normalise the increased perfusion after long duration anaesthesia. Decreased cerebral blood flow was observed for combinations of nimodipine with sodium valproate suggesting drug-drug interaction with important clinical implications. Similar decreases were found also for sumatriptan and nitro-glycerine when administered in combination with nimodipine. Studies with the various tracers (99m Tc_HMPAO or 99m Tc_ECD or 123l_IMP) showed clear differences in the perfusion data, confirming variation in the biochemical performance of the tracers. These differences, if not taken into consideration, caution for inappropriate clinical conclusions and subsequent erroneous therapeutic decisions. Improvement of radiotracer efficacy was subsequently attempted through application of the cyclodextrine complexation approach. Although cyciodextrine technology did not markedly improve the brain disposition of the 99m Tc-ECD, protection of the tracer against degradation was demonstrated. This study encouraged further exploration of this method for protection of the tracer against chemical and metabolic degradation. The current study was aimed to develop and effectively apply a non-human primate model with nuclear medicine technology for cerebral blood flow determinations after pharmacological interventions. This was achieved through the split-dose method and dedicated computer programming, which yielded a successful model with the non-human primate under anaesthesia. The model was validated with the application of acetazolamide to confirm familiar cerebrovascular reserve results, indicating that the model is sensitive to CBF changes. The model was also effectively applied in several pharmacological intervention studies, whereby cerebropharmacodynamics of selected drugs were investigated and established. This unique model of a non-human primate, Papio ursinus for cerebral blood flow determinations has served pharmacological research successfully during the past 12 years and could do so in the future, with scope to investigate new frontiers with improved technologies. / Thesis (Ph.D. (Pharmacology))--North-West University, Potchefstroom Campus, 2004.
3

Pathogenesis of orthopoxvirus (OPXV) infection in common CM and identification of immune correlates after vaccination with differently attenuated vaccines / Pathogenesis of orthopoxvirus (OPXV) infection in common CM and identification of immune correlates after vaccination with differently attenuated vaccines

Gan, Li Lin 17 January 2018 (has links)
No description available.
4

Dynamique des réponses lymphocytaires T locales et systémiques à l'injection d'un vaccin dans la peau / Dynamic of local and systemic cellular responses after vaccination in the skin

Joly, Candie 26 September 2019 (has links)
La vaccination est considérée comme l’un des plus grandes découvertes de l’histoire des maladies infectieuses, ayant permis le déclin et l’éradication de plusieurs pathogènes. Cependant, nous ignorons encore tous les mécanismes impliqués dans la protection contre les pathogènes. Cette méconnaissance est la cause de notre incapacité à formuler des nouveaux vaccins contre le VIH, la tuberculose, le paludisme et les pathogènes émergents. Récemment, on note des efforts pour induire une réponse cellulaire efficace après une vaccination, qui joue un rôle crucial dans la clairance des pathogènes.Cette thèse s’appuie sur un modèle de vaccin vivant atténue issu du virus de la vaccine : le MVA (Modified Vaccinia Ankara) et sur le modèle de primate non-humain. Nous avons caractérisé la réponse cellulaire après une immunisation intradermique suivant un schéma en prime-boost homologue, avec un boost à 2, suivi d’un boost à 9 mois. Le MVA a induit une infiltration massive de Lymphocytes T CD8 au niveau du site d’injection, 7 jours après l’immunisation. La réponse cellulaire systémique était modérée et ne reflétait pas l’amplitude de la réponse locale. Les injections du prime et du boost ont orienté la réponse cellulaire de façon différente, ce qui a mené à une importante induction de cellules T CD4 et CD8, persistantes, spécifiques de l’antigène et polyfonctionnelles après l’injection du boost à 9 mois.Cette étude souligne la différence entre les réponses systémiques et locales, démontrant l’importance de se focaliser sur la réponse tissulaire. Elle a également mis en lumière l’impact du schéma d’immunisation sur la qualité de la réponse cellulaire. / Vaccination has been considered as one of the greatest discoveries in the history of infectious diseases by allowing pathogens decline or eradication. However, we still ignore all the mechanism that lead to protection and therefore, fail to elaborate new vaccines against HIV, tuberculosis, malaria and emergent pathogens. Recently, efforts have been made to elicit effective cellular response after vaccination, which is crucial for pathogen clearance.This thesis relied on live-attenuated vaccine model derived from the vaccinia virus: the MVA (Modified Vaccinia Ankara) and a non-human primate model. We characterized the cellular immune response triggered by a homologous prime-boost intradermal injection of MVA, with a 2 months and 9 months boost. The MVA induced a massive infiltration of CD8 T cells at the injection site 7 days post immunization. In comparison, the systemic cellular response was mild and did not reflect the magnitude of the local response. The prime and boost injections elicited distinct orientation of the systemic and local T cells, which led to an important induction of a persistent, antigen-specific and polyfunctional CD8 and CD4 T cell responses after the 9 months boost.This work emphasizes the difference between local and systemic response, demonstrating the importance of the focus on tissue immunity. It also highlights the impact of the immunization schedule on the quality of the cellular response.
5

Infections of common marmosets with calpox virus

Kramski, Marit 29 January 2009 (has links)
Die vorsätzliche Freisetzung von Variola Virus (VARV) und schwere Erkrankungen des Menschen durch zoonotische Affen- (MPXV) und Kuh- (CPXV) pocken Viren stellen nach wie vor eine Bedrohung für die Bevölkerung dar. Klassische Pockenimpfstoffe bergen die Gefahr einer schweren Erkrankung. Deshalb ist die Entwicklung neuer Impfstoffe und Therapeutika von entscheidender Bedeutung. Deren Wirksamkeit und Sicherheit muss zunächst in verschiedenen Tiermodellen bewiesen werden. Existierende Makakken-Primatenmodelle leiden unter sehr artifiziellen Bedingungen der letalen Krankheitsinduktion durch VARV oder MPXV. Aus diesem Grund wurde das Calpox Virus/Krallenaffen-modell etabliert, welches auf einem CPXV aus natürlich infizierten Neuweltaffen (Marmosets) basiert. Das neue Modell hat drei wesentliche Vorteile: Die Arbeit mit Calpox Virus kann unter Sicherheitsstufe 2 durchgeführt werden und ist folglich einfacher in der Handhabung. 2. Die intranasale (i.n.) Infektion von Marmosets (Krallenaffen; Callithrix jacchus) spiegelt den natürlichen Infektionsweg von VARV wieder. Infizierte Affen entwickelten Pocken ähnliche Symptome und verstarben innerhalb von 2-3 Tagen nach Auftreten erster Symptome. Hohe Viruslasten wurden im Blut, Speichel und allen untersuchten Organen nachgewiesen. 3. Die i.n. Titration des Calpox Virus ergab eine 50 % Affen-Infektions-Dosis (MID50) von 8.3x102 pfu. Diese ist um den Faktor 10000 niedriger als in anderen Pocken-Primatenmodellen. Neun bis zehn Wochen nach einer Immunisierung mit dem Lister-Elstree Impfstoff waren alle Krallenaffen gegen eine letale Dosis des Calpox Virus (10 MID50) geschützt. Damit konnte der Nutzen des Calpox Virus/Krallenaffen-modells für die Erforschung neuer Impfstoffe gezeigt werden. Das Calpox Virus/Krallenaffen-modell überwindet wesentliche Nachteile bestehender Primatenmodelle und ist somit ein geeignetes Model für die Evaluierung von neuen Impfstoffen, Impfstrategien und antiviralen Therapien. / The intentional re-introduction of Variola virus (VARV), the agents of smallpox, into the human population remains of concern today. Moreover, zoonotic infections with Cowpox (CPXV) and Monkeypox virus (MPXV) cause severe diseases in humans. Smallpox vaccines presently available can have severe adverse effects that are no longer acceptable. The efficacy and safety of new vaccines and antivirals have to be demonstrated by different animal models. The existing primate models, using VARV and MPXV, need very high viral doses that have to be applied intravenously to induce a lethal infection in macaque monkeys. To overcome these drawbacks, the main objective of this study was to develop a primate model in which a smallpox-like disease could be induced by a CPXV virus designated calpox virus which was isolated from a lethal orthopox virus (OPV) outbreak in New World monkeys (marmosets). The new non-human primate model has three major advantages: 1. Working with calpox virus is less challenging and can be done under bio-safety-level two. 2. Mimicking the natural route of VARV infection, intranasally infected marmosets (Callithrix jacchus) reproducibly developed clinical symptoms of an OPV infection and died within two to three days after onset of the first symptoms. High viral loads of calpox virus were detected in blood, saliva and all analyzed organs. 3. Intranasal titration of the virus resulted in a 50 % monkey infectious dose (MID50) of 8.3x102 pfu, a lethal infectious dose 10,000 lower than those used in any other primate model. Moreover, we showed the aptitude of the primate model for the testing of new vaccines since nine to ten weeks after immunization with Vaccinia virus Lister-Elstree marmosets were completely protected against intranasal challenge with 10 MID50 of calpox virus. As the calpox virus/marmoset model overcomes major limitations of current primate models it is suitable to evaluate new vaccines, new vaccination strategies and antiviral therapies.

Page generated in 0.1128 seconds