• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 407
  • 141
  • 78
  • 39
  • 30
  • 14
  • 13
  • 12
  • 8
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 924
  • 117
  • 108
  • 107
  • 89
  • 83
  • 77
  • 75
  • 71
  • 67
  • 67
  • 60
  • 58
  • 58
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Katalytisk pyrolys av förbehandlad biomassa / Catalytic Pyrolysis of Pre-treated Biomass

Samo, Sandra January 2017 (has links)
Biomassa innehåller oorganiska ämnen som bl.a. alkalimetaller och alkaliska jordartsmetaller, vilket bidrar till ett minskat utbyte av pyrolysolja och ökar istället utbytet av gaser och lågvärdiga produkter. Detta sker p.g.a. att oorganiska ämnen agerar som krackningkatalysatorer. [1] Pyrolysolja har även en hög syrehalt vilket t.ex. gör den oblandbar med fossil olja. Genom att använda lakning som förbehandlingsmetod kan biomassans innehåll av oorganiska ämnen minska och pyrolysoljans sammansättning ändras. Detta sker genom bl.a. jonbytesreaktioner som uppstår mellan joner i lakningsmedlet och biomassans oorganiska ämnen. [2]        En katalysator kan användas för att minska syrehalten i pyrolysoljan och erhålla högvärdiga produkter som aromater. Detta sker genom katalytiska reaktioner som bl.a. krackning, aromatisering, ketoniserings- och aldolkondensation samt avspjälkning av vatten. [3] [4] I detta arbete har kombinationen av att förbehandla biomassa samt att låta pyrolysångor reagera över en katalysator undersökts. Fyra olika experiment har utförts för att kunna jämföra produktfördelningen mellan vätska, gas och kolrest, vätskefördelningen mellan H2O och olja samt olje-sammansättningen i de olika fallen. Experimenten utfördes med förbehandlad/icke-förbehandlad biomassa med och utan katalysator. Som lakningsmedel vid förbehandlingen användes en blandning av ättiksyra och avjoniserat vatten som biomassan behandlades med och sedan separerades ifrån. Som katalysator användes zeoliten HZSM-5 och utvärderades ex-bed i pyrolysören.        Resultaten visar att halten oorganiska ämnen minskar efter behandling. Förbehandlad biomassa utan katalysator ger ett ökat utbyte av vätska där vätskefördelningen mellan H2O och olja visar en större mängd olja jämfört med icke-förbehandlad biomassa utan katalysator. I fallet förbehandlad biomassan med katalysator visar resultatet att en större mängd gas bildas jämfört med icke-förbehandlad biomassa med katalysator, vilket tyder på att katalysatorn reagerar starkare mot sammansättningen av pyrolysångor från förbehandlad biomassa i det fallet. Vätskefördelningen vid icke-förbehandlad biomassan med katalysator visar en större mängd olja jämfört med förbehandlad biomassa med katalysator.       Olje-sammansättningen visar att den största mängden högvärdiga produkter, i detta fall polyaromatiska kolväten, bildas vid närvaro av katalysator. / Biomass generally contains inorganic substances such as alkali metals and alkaline earth metals, which reduce the yield of pyrolysis oil and increases the yield of gases and low-value products due to inorganic substances acting as cracking catalysts. [1] Pyrolysis oil also has a high oxygen content, making it im-miscible with fossil oil. Using leaching as a pretreatment method, the content of inorganic substances in biomass can decrease which changes the composition of the pyrolysis oil. Among other things, this occurs through ion-exchange reactions that occur when ions between the leachant and the ionically bonded inorganic elements in biomass change site. [2] A catalyst can be used to reduce oxygen content in the pyrolysis oil and obtain high-quality products such as aromatics. This is done through reactions such as cracking, aromatization, ketonization and aldol condensation as well as hydro-deoxygenation that arise in the presence of a catalyst. [3] [4]            In this work, four different experiments have been conducted to compare the product distribution between liquid, gas and char, the liquid distribution between H2O and oil and the oil composition in the different cases. The experiments were performed with pre-treated/untreated biomass with and without catalyst. As leachant, a mixture of acetic acid and deionized water was used with which the biomass was boiled and then separated. As catalyst, The zeolite HZSM-5 was used. HZSM-5 was evaluated ex-bed in the process. The results show that the content of inorganic substances decreases after treatment. Pre-treated biomass without catalytic upgrading leads to increase in the liquid yield in which the liquid distribution between H2O and oil shows a greater amount of oil compares to untreated biomass with without catalytic upgrading, indicating a decrease of inorganic substances. In the case of pre-treated biomass with catalyst, the result shows that a larger amount of gas is formed compared to untreated biomass with catalyst, which indicates that the catalyst reacts more strongly to the composition of pyrolysis vapors from a pre-treated biomass in that case. The liquid distribution of the untreated biomass with catalyst shows a greater amount of oil compared to pre-treated biomass with catalyst.       The oil composition shows that the largest amount of high-value products, in this case polyaromatic hydrocarbons, is formed in the presence of the catalyst.
232

Activated Sludge as Renewable Fuels and Oleochemicals Feedstock

Revellame, Emmanuel Durante 09 December 2011 (has links)
The utilization of activated sludge as feedstock for biofuel and oleochemical production was investigated. Initial studies included optimization of biodiesel production from this feedstock through in situ transesterification. Results of these studies indicated that activated sludge biodiesel is not economically viable. This was primarily due to relatively low yields and the high economics of feedstock dewatering. Strategies to increase biofuel yield from activated sludge were then evaluated. Bacterial species present in activated sludge are known to produce a wide variety of lipidic compounds as carbon and energy storage material and as components of their cellular structures. In addition to lipidic compounds, activated sludge bacteria might also contain other compounds depending on wastewater characteristics. Among these bacterial compounds, only the saponifiable ones can be converted to biodiesel. The unsaponifiable compounds present in the activated sludge are also important, not only for biofuel production, but also for a wide variety of applications. Characterization of lipids in activated sludge revealed that it contains significant amount of polyhydroxyalkanoates, wax esters, acylglycerides and fatty acids. It also contains Template Created By: James Nail 2010 sterols, steryl esters and phospholipids as well as small but detectable amounts of hydrocarbons. This indicated that activated sludge could be also an inexpensive source of oleochemicals. Another strategy that was evaluated was lipid-enhancement by fermentation of activated sludge. Since the majority of products from petroleum oil are used as transportation fuel, the aim here was to increase the saponifiable lipids in activated sludge bacteria by applying a biochemical stimulus (i.e. high C:N ratio). Results showed that application of this stimulus increased the amount of saponifiable lipids, particularly triacyglycerides, in the activated sludge. Furthermore, fermentation homogenized the lipids in the sludge regardless of its source. This solidified the concept of utilizing wastewater treatment facilities as biorefineries. To support the utilization of other compounds in raw activated sludge for biofuel production, a model compound was chosen for catalytic cracking experiments. Results indicated that catalytic cracking of 1-octadecanol over H+ZSM5 proceeds via dehydration, producing octadecene. The octadecene then undergoes a series of reactions including β-C─C bond scission, alkylation, oligomerization, dehydrocyclization and aromatization producing aromatics, paraffins and olefins suitable for fuel applications.
233

A Review of Modelling of the FCC Unit. Part I: The Riser

Selalame, Thabang W., Patel, Rajnikant, Mujtaba, Iqbal M., John, Yakubu M. 18 March 2022 (has links)
yes / Heavy petroleum industries, including the fluid catalytic cracking (FCC) unit, are useful for producing fuels but they are among some of the biggest contributors to global greenhouse gas (GHG) emissions. The recent global push for mitigation efforts against climate change has resulted in increased legislation that affects the operations and future of these industries. In terms of the FCC unit, on the riser side, more legislation is pushing towards them switching from petroleum-driven energy sources to more renewable sources such as solar and wind, which threatens the profitability of the unit. On the regenerator side, there is more legislation aimed at reducing emissions of GHGs from such units. As a result, it is more important than ever to develop models that are accurate and reliable, that will help optimise the unit for maximisation of profits under new regulations and changing trends, and that predict emissions of various GHGs to keep up with new reporting guide-lines. This article, split over two parts, reviews traditional modelling methodologies used in modelling and simulation of the FCC unit. In Part I, hydrodynamics and kinetics of the riser are dis-cussed in terms of experimental data and modelling approaches. A brief review of the FCC feed is undertaken in terms of characterisations and cracking reaction chemistry, and how these factors have affected modelling approaches. A brief overview of how vaporisation and catalyst deactiva-tion are addressed in the FCC modelling literature is also undertaken. Modelling of constitutive parts that are important to the FCC riser unit such as gas-solid cyclones, disengaging and stripping vessels, is also considered. This review then identifies areas where current models for the riser can be improved for the future. In Part II, a similar review is presented for the FCC regenerator system.
234

The Partial Oxidation of Ortho-Xylene in a Transported-Bed Reactor

Paetkau, Theodore Reginald 10 1900 (has links)
<p> The partial, catalytic oxidation of ortho-xylene was investigated in a transported-bed reactor in which the vanadium pentoxide catalyst in the form of extremely small particles (average particle size of 45 microns) was conveyed upward by the reacting gases.</p> <p> The reaction was studied at a contact time of about 0.2 seconds, at air-to-o-xylene molar ratios of 42 to 86, at catalyst-to-gas ratios of 8 to 23, and at a reaction temperature of 750°F (400°C).</p> <p> Reaction products were analyzed by Gas Chromatography and Nuclear Magnetic Resonance Spectroscopy.</p> <p> Product analysis indicated a high yield of o-tolualdehyde, small yields of other oxidation products, but only trace amounts of phthalic anhydride. These results are consistent with proposed mechanisms for this reaction.</p> / Thesis / Master of Engineering (MEngr)
235

Catalytic Effect of Iron Oxidizing Bacteria on the Production of Pigment from Acid Mine Drainage

Murphy, Julianna E. 19 September 2017 (has links)
No description available.
236

Synthesis of random and site-specific protein-polymer conjugates by RAFT polymerization

Falatach, Rebecca M. 24 November 2015 (has links)
No description available.
237

A Numerical Study of Catalytic Light-Off Response

Jia, Wenbo January 2016 (has links)
No description available.
238

Studies on <i>E. Coli</i> Membrane Protein Biogenesis: Mechanism of Signal Peptide Peptidase A and the Influence of YiDC Depletion on Cellular Processes

Wang, Peng 08 September 2009 (has links)
No description available.
239

Catalytic Metallopeptide Promoted Inactivation of Enzyme Targets Related to Disease: Angiotensin Converting Enzyme-1 and SortaseA

Hocharoen, Lalintip 19 December 2012 (has links)
No description available.
240

Pyrolysis-assisted Catalytic Hydrogenolysis of Lignin in Solvents for Aromatic Monomer Preparation / リグニンの溶媒中での熱分解支援接触水素化分解による芳香族モノマー生産

ワン, ジャキ 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24712号 / エネ博第455号 / 新制||エネ||85(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻 / (主査)教授 河本 晴雄, 教授 亀田 貴之, 教授 髙野 俊幸 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM

Page generated in 0.0274 seconds