• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 23
  • 13
  • 6
  • 6
  • 1
  • Tagged with
  • 146
  • 146
  • 39
  • 28
  • 27
  • 27
  • 21
  • 19
  • 19
  • 17
  • 16
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Classical chaotic scatting from symmetric four hill potentials

Bauman, Jordan Michael 14 August 2002 (has links)
Graduation date: 2003
22

Renormalization, invariant tori, and periodic orbits for Hamiltonian flows

Abad, Juan José, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI/Dissertation Abstracts International.
23

Renormalization, invariant tori, and periodic orbits for Hamiltonian flows

Abad, Juan José, 1967- 11 March 2011 (has links)
Not available / text
24

Hamiltonian Systems of Hydrodynamic Type

REYNOLDS, A PATRICK 23 December 2010 (has links)
We study the Hamiltonian structure of an important class of nonlinear partial differential equations: the so-called systems of hydrodynamic type, which are first-order in tempo-spatial variables, and quasi-linear. Chapters 1 and 2 constitute a review of background material, while Chapters 3, 4, 5 contain new results, with additional review sections as necessary. In Chapter 3 we demonstrate, via the Nijenhuis tensor, the integrability of a system of hydrodynamic type derived from the classical Volterra system. In Chapter 4, families of Hamiltonian structures of hydrodynamic type are constructed, as well as a gauge transform acting on Hamiltonian structures of hydrodynamic type. In Chapter 5, we present necessary and sufficient criteria for a three-component system of hydrodynamic type to be Hamiltonian, and classify the Lie-algebraic structures induced by a Hamiltonian structure for four-component systems of hydrodynamic type. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2010-12-23 11:35:41.976
25

Magnetic Spherical Pendulum

Yildirim, Selma 01 January 2003 (has links) (PDF)
The magnetic spherical pendulum is a mechanical system consisting of a pendulum whereof the bob is electrically charged, moving under the influence of gravitation and the magnetic field induced by a magnetic monopole deposited at the origin. Physically not directly realizable, it turns out to be equivalent to a reduction of the Lagrange top. This work is essentially the logbook of our attempts at understanding the simplest contemporary approaches to the magnetic spherical pendulum.
26

Macroscopic dressing of electron states in a two dimensional ballistic electron waveguide /

Subbiah, Suresh, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 165-167). Available also in a digital version from Dissertation Abstracts.
27

The effect of pair interaction on nuclear matter

Pwu, Yih. January 1961 (has links)
Thesis (Ph.D.)--University of California, Berkeley, 1961. / "UC-34 Physics" -t.p. "TID-4500 (16th Ed.)" -t.p. Includes bibliographical references (p. 102).
28

Characterizing entangling quantum dynamics /

Bremner, Michael J. January 2005 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
29

Convexity, convergence and feedback in optimal control /

Goebel, Rafal, January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (p. 120-124).
30

Application of the generalized Melnikov method to weakly damped parametrically excited cross waves with surface tension

Fadel, Suzan M. 25 September 1998 (has links)
The Wiggins-Holmes extension of the generalized Melnikov method (GMM) is applied to weakly damped parametrically excited cross waves with surface tension in a long rectangular wave channel in order to determine if these cross waves are chaotic. The Lagrangian density function for surface waves with surface tension is simplified by transforming the volume integrals to surface integrals and by subtracting the zero variation integrals. The Lagrangian is written in terms of the three generalized coordinates (or, equivalently the three degrees of freedom) that are the time-dependent components of the velocity potential. A generalized dissipation function is assumed to be proportional to the Stokes material derivative of the free surface. The generalized momenta are calculated from the Lagrangian and the Hamiltonian is determined from a Legendre transformation of the Lagrangian. The first order ordinary differential equations derived from the Hamiltonian are usually suitable for the application of the GMM. However, the cross wave equations of motion must be transformed in order to obtain a suspended system for the application of the GMM. Only three canonical transformations that preserve the dynamics of the cross wave equations of motion are made because of an extension of the Herglotz algorithm to nonautonomous systems. This extension includes two distinct types of the generalized Herglotz algorithm (GHA). The system of nonlinear nonautonomous evolution equations determined from Hamilton's equations of motion of the second kind are averaged in order to obtain an autonomous system. The unperturbed system is analyzed to determine hyperbolic saddle points that are connected by heteroclinic orbits The perturbed Hamiltonian system that includes surface tension satisfies the KAM nondegeneracy requirements; and the Melnikov integral is calculated to demonstrate that the motion is chaotic. For the perturbed dissipative system with surface tension, the Melnikov integral is identically zero implying that a higher dimensional GMM is necessary in order to demonstrate by the GMM that the motion is chaotic. However, numerical calculations of the largest Liapunov characteristic exponent demonstrate that the perturbed dissipative system with surface tension is also chaotic. A chaos diagram is computed in order to search for possible regions of the damping parameter and the Floquet parametric forcing parameter where chaotic motions may exist. / Graduation date: 1999

Page generated in 0.0478 seconds