Spelling suggestions: "subject:"conlinear time deries"" "subject:"conlinear time 3series""
11 |
非線型時間序列之動態競爭模型 / Dynamic Competing Model of Non-linear Time Series李奇穎, Lee, Chi-Ying Unknown Date (has links)
時間序列分析發展至今,常常發現動態資料的走勢,隨著時間過程而演變.所以傳統的模式配適常無法得到很好的解釋,因此許多學者提出不同的模型建構方法.但是對於初始模式族的選擇,卻充滿相當的主觀與經驗認定成份.本文針對時變型時間序列分析,考慮利用知識庫,由模式庫來判斷初始模式.再藉由遺傳演算法的觀念,建立模式參數的遺傳關係.我們把這種遺傳演算法,稱之為時變遺傳演算法.針對台灣省國中數學教師人數,分別以時變遺傳演算法,狀態空間,與單變量ARIMA來建構模式,並作比較.比較結果發現,時變遺傳演算法較能掌握資料反轉的趨勢,且預測值增加較為平緩.因此時變遺傳演算法在模式建構上將是個不錯的選擇. / In time series analysis, we find often the trend of dynamic
data changingwith time. Using the traditional model fitting
can't get a good explanationfor dynamic data. Therefore, many savants developed a lot of methods formodel construction.
However, these methods are usually influenced by personal
viewpoint and experience in model base selection. In this
thesis, we discussedtime-variant time series analysis. First, we builded a model base to judge inial models by knowledge base.
Then, we set up the genetic relations of themodels' parameter. This method is called Time Variant Genetic Algorithm. We use the data if the number of junior high school mathematic teachers in Taiwan to ccompare the predictive performance of Time Variant Genetic Algorithmwith State Space and ARIMA. The forecasting performance shows the Time VariantGenetic Algorithm takes a better prediction result.
|
12 |
Anticipative alpha-stable linear processes for time series analysis : conditional dynamics and estimation / Processus linéaires alpha-stables anticipatifs pour l'analyse des séries temporelles : dynamique conditionnelle et estimationFries, Sébastien 04 December 2018 (has links)
Dans le contexte des séries temporelles linéaires, on étudie les processus strictement stationnaires dits anticipatifs dépendant potentiellement de tous les termes d'une suite d'erreurs alpha-stables indépendantes et identiquement distribuées.On considère en premier lieu les processus autoregressifs (AR) et l'on montre que des moments conditionnels d'ordres plus élevés que les moments marginaux existent dès lors que le polynôme caractéristique admet au moins une racine à l'intérieur du cercle unité.Des formules fermées sont obtenues pour les moments d'ordre un et deux dans des cas particuliers.On montre que la méthode des moindres carrés permet d'estimer une représentation all-pass causale du processus dont la validité peut être vérifiée par un test de type portmanteau, et l'on propose une méthode fondée sur des propriétés d'extreme clustering pour retrouver la représentation AR originale.L'AR(1) stable anticipatif est étudié en détails dans le cadre des vecteurs stables bivariés et des formes fonctionnelles pour les quatre premiers moments conditionnels sont obtenues pour toute paramétrisation admissible.Lors des évènements extrêmes, il est montré que ces moments deviennent équivalents à ceux d'une distribution de Bernoulli chargeant deux évolutions futures opposées: accroissement exponentiel ou retour aux valeurs centrales.Des résultats parallèles sont obtenus pour l'analogue de l'AR(1) en temps continu, le processus d'Ornstein-Uhlenbeck stable anticipatif.Pour des moyennes mobiles alpha-stables infinies, la distribution conditionnelle des chemins futurs sachant la trajectoire passée est obtenue lors des évènements extrêmes par le biais d'une nouvelle représentation des vecteurs stables multivariés sur des cylindres unités relatifs à des semi-normes.Contrairement aux normes, ce type de représentation donne lieu à une propriété de variations régulières des queues de distribution utilisable dans un contexte de prévision, mais tout vecteur stable n'admet pas une telle représentation. Une caractérisation est donnée et l'on montre qu'un chemin fini de moyenne mobile alpha-stable sera représentable pourvu que le processus soit "suffisamment anticipatif".L'approche s'étend aux processus résultant de la combinaison linéaire de moyennes mobiles alpha-stables, et la distribution conditionnelle des chemins futurs s'interprète naturellement en termes de reconnaissance de formes. / In the framework of linear time series analysis, we study a class of so-called anticipative strictly stationary processes potentially depending on all the terms of an independent and identically distributed alpha-stable errors sequence.Focusing first on autoregressive (AR) processes, it is shown that higher order conditional moments than marginal ones exist provided the characteristic polynomials admits at least one root inside the unit circle. The forms of the first and second order moments are obtained in special cases.The least squares method is shown to provide a consistent estimator of an all-pass causal representation of the process, the validity of which can be tested by a portmanteau-type test. A method based on extreme residuals clustering is proposed to determine the original AR representation.The anticipative stable AR(1) is studied in details in the framework of bivariate alpha-stable random vectors and the functional forms of its first four conditional moments are obtained under any admissible parameterisation.It is shown that during extreme events, these moments become equivalent to those of a two-point distribution charging two polarly-opposite future paths: exponential growth or collapse.Parallel results are obtained for the continuous time counterpart of the AR(1), the anticipative stable Ornstein-Uhlenbeck process.For infinite alpha-stable moving averages, the conditional distribution of future paths given the observed past trajectory during extreme events is derived on the basis of a new representation of stable random vectors on unit cylinders relative to semi-norms.Contrary to the case of norms, such representation yield a multivariate regularly varying tails property appropriate for prediction purposes, but not all stable vectors admit such a representation.A characterisation is provided and it is shown that finite length paths of a stable moving average admit such representation provided the process is "anticipative enough".Processes resulting from the linear combination of stable moving averages are encompassed, and the conditional distribution has a natural interpretation in terms of pattern identification.
|
13 |
截取式自迴歸條件變異數分析法 / Trimmed ARCH(1) model廖本杰 Unknown Date (has links)
時間數列分析過程,常常發現其走勢,隨著時間過程而演變,應用傳統的線性模式來配適,往往很難獲得合適預測值。因此近幾年來,非線性時間數列結構性改變的研究越來越受到重視,也一直是時間數列及計量經濟學學者所熱衷的研究主題之一。本文利用模糊理論的觀念,以模糊炳找出配適ARCH模式數列之轉折區間,分別以轉折區問起始點及結束點作為截取點,去配適ARCH(1)模式,稱之為截取式自迴歸條件變異數分析法(Trimmed ARCH(1) model)。針對台幣對美元銀行間每日收盤匯率,分別以單變量ARIMA、ARCH(1)、Trtmmed ARCH(1)來建構模式,並做比較分析。比較結果發現,以轉折區間結束點作為截取點之Trimmed ARCH(1)模式,其預測值最為準確,大為改善了原來ARCH(1)模式之預測水準。 / In time series analysis, we often find the trend of which changing with time. Using the traditional model fitting can't get a good prediction. Hence the research of structure change of non-linear time series is attentive in recent years, and non-linear time series analysis is a research topic which the scholars of time series and econometrics are intent on. This article tries to use the theory of fuzzy ,to recognize the structure change period by the fuzzy classification, let the first point and the last point of the structure change period be the cute points, to fit ARCH(1) mod ie which we called the Trimmed ARCH(1) model. We use the data of the exchange rate between N.T dol liars and U.S dollars to compare the ARIMAwith ARCH(1) and Trimmed ARCH(1), the forcasting performance shows that Trimmed ARCH(1) model takes a better prediction result.
|
14 |
遺傳演算法在非線性時間數列結構改變之分析與應用 / Using Genetic Algorithms to Search for the Structure Change of Non-linear Time Series阮正治, Juan, Cheng Chi Unknown Date (has links)
近幾年來,非線性時間數列分析一直是時間數列及計量經濟學者所熱衷的研究主題之一,而非線性時間數列結構改變的研究也越來越受到重視。其中的門檻自迴歸模式,雖具有線性模式所不能配適的特性,但模式建構的問題,一直是其在發展應用上的瓶頸。本研究擬以門檻自迴歸模式建構的流程並結合遺傳演算法的最佳化搜尋技術,架構出時間數列遺傳演算法,藉此演算法則及程序,全域性地搜尋最佳的門檻自迴歸模式。 / Non-linear time series analysis is a research topic which the schalors of time series and econometrics are intent on, and the research of structure change of non-linear time series is attentive. Threshold autoregressive model (TAR model) of non-linear time series has some characters which linear model fail to fit while the problem of how to find an appropriate threshold value is still attracted many researchers attention. In this paper, we present about searching the parameters for a TAR model by genetic algorithms.
|
15 |
時間序列在品質管制上的應用 / Apply time series to quality control陳繼書, Chen, Gi Sue Unknown Date (has links)
當我們利用Shewhart管制圖(Shewhart control chart)或累積和管制圖(Cumulative-sum chart. CUSUM chart)來偵測製程時,通常假設製品係獨立取自一個服從均數μ和標準差為σ的獨立常態分配的管制下進行。但是若產品特性值呈現自相關時,這類管制圖就可能發生誤導的結果。本文利用時間序列模式來解決具相關變數的管制圖問題。並考慮利用非線性時間序列模式及特別原因管制圖(special-cause control chart)來檢視台灣經濟景氣指標是否處於控制中的狀態。並討論特別原因管制圖的連串長度分佈(run length distribution)。在最後的實例分析中,介紹自動控制的觀念。 / Traditionally, in the quality control process, such as: Shewhart control chart or CUSUM chart, it is assumed that the observation process follows an i.i.d normal distribution. If the assumption for independence fails, that is when the process exhibits type of autocorrelation, we need to find a more reliable decision method. In this paper, we will apply the time series analysis and structure changed concept to slove the serial correlation problem. The idea of automatic control can be applied in the explanation of this nonlinear process. Finally, a time series about the monitoring indicators of Taiwan is discussed in detail as an example.
|
16 |
外匯市場非線型時間序列之實證研究 --自迴歸條件異質變異數與類神經網路模式分析法 / A Non-linear Series Analysis of Foreign Market --An ARCH and Neural Approach葉俊雄, Yeh, Jiunn Shyong Unknown Date (has links)
學界間廣泛地認為一般金融資產報酬具有的特性是:線型不可預測性,條件
異質變異數,非條件尖峰態 ... 等特性o 固然金融資產報酬具有線型不可
預測之特性,可是並不能否決其間可能有非線型依存關係的存在o目前大部
份經濟計量分析方法中的模式建構問題均是在假設模式的結構訊息已知的
條件下求解,然若真實體系的結構訊息未知或不明朗時,貿然地假設為某種
特定的模式結構,則可能又難於避免模式設定錯誤的困擾,因而對於真實體
系行為的描述亦將可能是誤導且不合理的,這意味著:除非該特定的模式結
構正是真實體系的表徵, 否則無論該特定模式的結構特性多完美,均難以
建構一令人信服的數理化模式來表徵真實體系之行為o 不幸地,此一問題
在高度非線型的動態隨機體系中尤其嚴重, 甚至是否存在一 ``真實''
模式來據以表徵體系之行為,亦是相當值得懷疑, 故考慮一種無需特定結
構訊息假設的無母數方法或函數逼近法實屬必要o 類神經網路中的倒傳遞
網路模式即是符合此種特性的方法之一o然而學界間仍無法確定的是金融
資產報酬序列資料所產生的 ARCH 效果本身是否為真實序列資料產生機制
特性之顯現, 還是應歸咎於被忽略掉條件均數方面之非線性所衍生模式設
定錯誤情況下的代用模式, 並不得而知;另一方面, ARCH 模式的顯著成就
及其價值亦不能予以輕易地漠視, 因此, 試圖將 ARCH 模式所能提供的攸
關訊息納入倒傳遞網路模式的考量之中而形成倒傳遞網路-自迴歸條件異
質變異數 (BPN-ARCH) 模式以增進樣本外預測能力的精度便是本論文最
主要的嘗試重點與目的o
|
Page generated in 0.0882 seconds