• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 85
  • 31
  • 18
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 412
  • 182
  • 150
  • 88
  • 69
  • 56
  • 52
  • 52
  • 52
  • 50
  • 43
  • 36
  • 33
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Rheology of polymeric suspensions polymer nanocomposites and waterborne coatings /

Xu, Jianhua. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2006 Sep 21
72

Laminar flow through isotropic granular porous media /

Woudberg, Sonia. January 2006 (has links)
Thesis (MScIng)--University of Stellenbosch, 2006. / Bibliography. Also availabe via the Internet.
73

The effect of pipe roughness on non-Newtonian turbulent flow

Van Sittert, Fritz Peter January 1999 (has links)
Thesis (MTech (Civil Engineering))--Cape Technikon, Cape Town, 1999 / Pipe roughness is known to greatly increase the turbulent flow friction factor for Newtonian fluids. The well-known Moody diagram shows that an order of magnitude increase in the friction is possible due to the effect of pipe roughness. However, since the classical work of Nikuradse (1926 -1933), very little has been done in this area. In particular, the effects that pipe roughness might have on non-Newtonian turbulent flow head loss, has been all but totally ignored. This thesis is directed at helping to alleviate this problem. An experimental investigation has been implemented in order to quantify the effect that pipe roughness has on non-Newtonian turbulent flow head loss predictions. The Balanced Beam Tube Viscometer (BBTV), developed at the University of Cape Town, has been rebuilt and refined at the Cape Technikon and is being used for research in this field. The BBTV has been fitted with pipes of varying roughness. The roughness of smooth P\'C pipes was artificially altered using methods similar to those of Nikuradse. This has enabled the accumulation of flow data in laminar and turbulent flow in pipes that are both hydraulically smooth and rough Newtonian and non-Newtonian fluids have been used for the tests. The data have been subjected to analysis using various theories and scaling laws. The strengths and problems associated with each approach are discussed and It is concluded that roughness does have a significant effect on Newtonian as well as non-Newtonlan flow.
74

Non-Newtonian fluid flow measurement using sharp crested notches

Khahledi, Morakane Charlotte January 2014 (has links)
Master of Technology: Civil Engineering In the Faculty of Engineering At the Cape Peninsula University of Technology 2014 / Notches, particularly rectangular and V shaped are the cheapest and most common devices used to measure the flow rate of water in open channels. However, they have not been used to measure the flow rate of non-Newtonian fluids. These viscous fluids behave differently from water. It is difficult to predict the flow rate of such fluids during transportation in open channels due to their complex viscous properties. The aim of this work was to explore the possibility of extending the application of especially rectangular and V-shaped notches to non-Newtonian fluids. The tests reported in this document were carried out in the Flow Process and Rheology Centre laboratory. Notches fitted to the entrance of a 10 m flume and an in-line tube viscometer were calibrated using water. The in-line tube viscometer with 13 and 28 mm diameter tubes was used to determine the fluid rheology. Flow depth was determined using digital depth gauges and flow rate measurements using magnetic flow meters. Three different non-Newtonian fluids, namely, aqueous solutions of Carboxymethyl Cellulose (CMC) and water-based suspensions of kaolin and bentonite were used as model non-Newtonian test fluids. From these the coefficient of discharge (Cd) values and appropriate non-Newtonian Reynolds numbers for each fluid and concentration were calculated. The experimental values of the coefficient of discharge (Cd) were plotted against three different definitions of the Reynolds number. Under laminar flow conditions, the discharge coefficient exhibited a typical dependence on the Reynolds number with slopes of ~0.43-0.44 for rectangular and V notches respectively. The discharge coefficient was nearly constant in the turbulent flow regime. Single composite power-law functions were used to correlate the Cd-Re relationship for each of the two notch shapes used. Using these correlations, the Cd values could be predicted to within ±5% for the rectangular and V notches. This is the first time that such a prediction has been done for a range of non-Newtonian fluids through sharp crested notches. The research will benefit the mining and food processing industries where high concentrations of non-Newtonian fluids are transported to either disposal sites or during processing.
75

The effect of the particle size distribution on non-Newtonian turbulent slurry flow in pipes

Thorvaldsen, Gary Sven January 1996 (has links)
Thesis (MTech (Chemical Engineering))--Cape Technikon, Cape Town,1996 / The handling of solid-liquid suspensions is an important concern within the chemical and processing industries and many theoretical models have been proposed to try and explain and predict turbulent flow behaviour. However, the prediction of turbulent flow from only the viscous properties of non-Newtonian suspensions has over the years been questioned by researchers. This thesis considers theoretical models well established in the literature and the Slatter model, which uses both the rheology of the suspension and the particle size distribution of the solids. These models are used to analyze the experimental data and the effect that particle size and the particle size distribution has on turbulent flow behaviour. The literature concerning the rheological fundamentals relevant to fluid flow in pipes has been examined. The Newtonian turbulent flow model as well as the non-Newtonian models of Dodge & Metzner, Torrance, Kemblowski & Kolodziejski, Wilson & Thomas and Slatter have been reviewed. Test work was conducted at the University of Cape Town's Hydrotransport Research Laboratory using a pumped recirculating pipe test rig. The test apparatus has been fully described and calibration and test procedures to enable collecting of accurate pipeline data have been presented. Three slurries were used in test work namely kaolin clay, mixture I (kaolin clay and rock flour) and mixture 2 (kaolin clay, rock flour and sand) with ad,s particle size ranging from 24/Lm to 170/Lm. The yield pseudoplastic model has been used to model and predict the laminar flow of the suspensions that were tested and the meth9J adopted by Neill (1988) has been used to determine the rheological constants. The pipeline test results have been presented as pseudoshear diagrams together with the theoretical model lines providing a visual appraisal of the performance of each model. The Slatter model predicts the test data best with the other theoretical models that were considered tending to under predict the head loss. The reason the Slatter model performs better than the other theoretical models is because this model can account for the wall roughness and particle roughness effect. Evidence to support this statement has been presented. This thesis highlights the fact that the particle size distribution is a vitally important property of the suspension and that it does influence turbulent flow behaviour. It shows that turbulence modelling using the particle roughness effect (eg Slatter, 1994) is valid and can be adopted for non-Newtonian slurries. It is concluded that the particle size distribution must be used to determine the particle roughness effect and this effect must be incorporated in the turbulent flow analysis of non-Newtonian slurries.
76

Determination of pressure loss and discharge coefficients for non-newtonian fluids in long square-edged orifices

Chowdhury, M.R January 2010 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2010. Includes bibliographical references (leaves 132-137).
77

Non-Newtonian loss coefficients for Saunders diaphragm valves

Kabwe, Aime Mume January 2009 (has links)
Dissertation submitted in fulfilment of requirements for the degree Master Technology: Chemical Engineering in the FACULTY OF ENGINEERING at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY, 2009 / The prediction of the energy losses when designing pipeline and pumping systems requires accurate loss coefficient data. But the loss coefficient data found in the open literature was not adequate for predicting the loss coefficient for Saunders straight-through diaphragm valves. As more accurate loss coefficient data to enable more efficient pipeline designs are scarce in the open literature, it is problematic to predict the head loss due to the pipeline fittings, and particularly for diaphragm valves. Most of the data given in the literature are for turbulent flow based on water. Due to water shortages mining operations are forced to increase their solids concentrations and to operate in laminar flow (Slatter, 2002). Consequently there is a need to determine loss coefficient data in laminar flow for valves used in these industries to ensure energy efficient designs (Pienaar et al., 2001; 2004) or if needed, to derive a new correlation to predict losses through Saunders diaphragm valves. However, a systematic study of various sizes of diaphragm valves of different manufacturers to ascertain, if the same loss coefficient can be applied, has never been done. Therefore a comparison will be made between the data produced in this work and the existing correlations. The objective of this research was to determine loss coefficient data in laminar, transitional and turbulent flow for the Saunders type straight-through diaphragm valves ranging from 40 mm to 100 mm in the fully open, 75 %, 50 % and 25 % open positions, using a range of Newtonian and non-Newtonian fluids. The test work was conducted on the valve test rig in the Flow Process Research Centre at the Cape Peninsula University of Technology. This work investigated only Newtonian and time independent homogeneous non-Newtonian fluids or slurries flowing through Saunders straight-through diaphragm valves in the turbulent, transitional and laminar regimes. Weir-type Saunders valves and time-dependent fluid behaviour were not investigated in this study. Preamble Non-Newtonian Loss Coefficients for Saunders Diaphragm Valves A Mume Kabwe The results for each test are presented in the form of valve loss coefficient (kvalve) against Reynolds number (Re). This thesis adds new loss coefficient data to the open literature, and a new correlation, which will be useful for designing pipelines in industries, as well as contributing to the academic debate in this discipline.
78

Singular behaviour of Non-Newtonian fluids

Mennad, Abed January 1999 (has links)
Thesis (MTech (Mechanical Engineering))--Peninsula Technikon, 1999 / Since 1996, a team at the Centre for Research in Applied Technology (CRATECH) at Peninsula Technikon, under NRF sponsorship and with industrial co-operation, has been involved in the simulation of Non-Newtonian flow behaviour in industrial processes, in particular, injection moulding of polymers. This study is an attempt to deal with some current issues of Non-Newtonian flow, in small areas, from the viewpoint of computational mechanics. It is concerned with the numerical simulation of Non-Newtonian fluid flows in mould cavities with re-entrant corners. The major complication that exists in this numerical simulation is the singularity of the stresses at the entry of the corner, which is responsible for nonintegrable stresses and the propagation of solution errors. First, the study focuses on the derivation of the equations of motion of the flow which leads to Navier- Stokes equations. Thereafter, the occurrence of singularities in the numerical solution of these equations is investigated. Singularities require special attention no matter what numerical method is used. In finite element analysis, local refinement around the singular point is often employed in order to improve the accuracy. However, the accuracy and the rate of convergence are not, in general, satisfactory. Incorporating the nature of singularity, obtained by an asymptotic analysis in the numerical solution, has proven to be a very effective way to improve the accuracy in the neighborhood of the singularity and, to speed up the rate of convergence. This idea has been successfully adopted in solving mainly fracture mechanics problems by a variety of methods: finite difference, finite elements, boundary and global elements, and spectral methods. In this thesis, the singular finite elements method (SFEM), similar in principle to the crack tip element used in fracture mechanics, is proposed to improve the solution accuracy in the vicinity of the singular point and to speed up the rate of convergence. This method requires minor modifications to standard finite element schemes. Unfortunately, this method could not be implemented in this study due to the difficulty in generating the mesh for the singular element. Only the standard finite element method with mesh refinement has been used. The results obtained are in accordance with what was expected.
79

Investigation of factors effecting yield stress determinations using the slump test.

Nyekwe, Ichegbo Maxwell January 2008 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2008. / Certain non-Newtonian fluids exhibit a yield stress which can be measured with a variety of instruments varying from very sophisticated rotary and tube viscometers to hand-held slump cones and cylinders of various sizes. Accurate yield stress measurement is significant for process design and disposal operations for thickenend tailings. The slump value was first related to the yield stress by Murata (1984). Later, that work was corrected by Christensen (1991) for an error in the mathematical analysis. Slump, based on a circular cylindrical geometry was first investigated by Chandler (1986). These concepts led to the study by Pashias et al., (1996) that formed the basis for the current research. The Flow Process Research Centre (FPRC) at the Cape Peninsula University of Technology developed a slump meter designed to lift the cone or cylinder vertically at controlled lifting speeds. In addition the simple hand-held cylinder which is an adaptation of slump cones which were originally developed by the concrete industry to determine the flowability of fresh concrete was also used. The vane technique was used as a control. Cones and cylinders made of stainless steel and PVC were fitted to the slump meter. The yield stresses of four non-Newtonian fluids at different concentrations were tested in four different configurations at different lift speeds to ascertain whether the measuring position, lift speed, slip, geometry, wall surface material, and stability has an effect on the value of yield stress measured. The effect of different predictive models was also ascertained.The cylinder, lump and cone models relating slump to yield stress was used in the dimensional analysis of the results. The objective of this work was to determine if the slump tests (cone, cylinder and the hand-held cylinder) would generate yield stress values comparable to those found using the vane technique. It was establised that there was no significant effect of lift speed, stability, geometry and wall surface material on the value of yield stress. The effect of measuring position on the value of yield stress calculated gave a difference of 25%. Using dimensional analysis, the lump model (Hallbom, 2005) more accurately predicts the material yield stress when using the hand-held cylinder as well as all the cone results (due to its specific geometry), and cylinder configurations, thus affirming the work of Clayton et al., 2003. It is concluded that, although the materials and concentrations tested induced errors within 40%, the hand-held cylinder shows promise as a reliable, quick and simple way of measuring the yield stress.
80

The effect of type and concentration of surfactant on stability and rheological properties of explosive emulsions

Tshilumbu, Nsenda Ngenda January 2009 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2009. / This study investigated water-in-oil (WIG) super-concentrated emulsions used as pumpable explosives. The aqueous phase of the emulsions is a supersaturated nitrate salt solution (at room temperature), with a volume fraction usually greater than 0.8. Aqueous phase droplets are deformed by packing and contact with neighbouring droplets. Compounds of this kind are thermodynamically unstable and their instability is related to the coarsening of emulsions (droplet coalescence) and phase transition (crystallisation) in the dispersed phase. However, it was demonstrated that the dominating mechanism is slow crystallisation inside the supercooled droplets. The main goal of this thesis therefore concerned a phenomenological study of the dependence of type and concentration of surfactant, as well as the ageing processes, on the rheological properties of these emulsions. The bulk rheological measurements were carried out using a rotational dynamic rheometer MCR 300 (Paar Physica). Samples of different types of surfactant (Pibsa-MEA, Pibsa-UREA, Pibsa-IMIDE, SMO and SMO/Pibsa-MEA) and different concentrations of surfactants were studied. The results of the measurements include the flow and viscoelastic properties of the materials. The rheological parameters have been correlated with the kinetics of structural changes during ageing as a function of emulsion formulation content. The emulsions under study were non-Newtonian liquids. It was demonstrated that different surfactant types yield different interfacial properties. In fact, both the interfacial tension and the interfacial elastic modulus were found to decrease according to the sequence MEA-UREAMEAlSMG- IMIDE-SMG. It was established that the surfactant type and surfactant concentration affected the bulk rheological properties of explosive emulsions. Indeed, both the elastic modulus and the yield stress as function of surfactant type decreased in the following order: MEA-IMIDE-UREA-MEAlSMG, whereas they also decreased as the surfactant concentration increased. However the sensitivity of the rheological parameters to the type or concentration of surfactant was found to decrease as the droplet size increased. Moreover, the changes in rheological parameters were more strongly expressed than any changes in interfacial tension. This last finding is considered as rather important. It seems reasonable to assume that it provides proof of an active role of a surfactant not only as a compound responsible for the interfacial tension, but also creating additional sources of elasticity.

Page generated in 0.0692 seconds