• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 480
  • 106
  • 97
  • 74
  • 40
  • 14
  • 13
  • 13
  • 8
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • Tagged with
  • 1064
  • 291
  • 281
  • 258
  • 155
  • 142
  • 138
  • 130
  • 121
  • 120
  • 103
  • 98
  • 93
  • 83
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

Ijiga, Owoicho Emmanuel January 2017 (has links)
A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017 / The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel. / CK2018
302

Optimal chunk-based resource allocation for OFDMA systems with multiple BER requirements

Unknown Date (has links)
In wireless orthogonal frequency division multiple-access (OFDMA) standards, subcarriers are grouped into chunks and a chunk of subcarriers is made as the minimum allocation unit for subcarrier allocation. We investigate the chunk-based resource allocation for OFDMA downlink, where data streams contain packets with diverse bit-errorrate (BER) requirements. Supposing that adaptive transmissions are based on a number of discrete modulation and coding modes, we derive the optimal resource allocation scheme that maximizes the weighted sum of average user rates under the multiple BER and total power constraints. With proper formulation, the relevant optimization problem is cast as an integer linear program (ILP). We can rigorously prove that the zero duality gap holds for the formulated ILP and its dual problem. Furthermore, it is shown that the optimal strategy for this problem can be obtained through Lagrange dual-based gradient iterations with fast convergence and low computational complexity per iteration. Relying on the stochastic optimization tools, we further develop a novel on-line algorithm capable of dynamically learning the underlying channel distribution and asymptotically approaching the optimal strategy without knowledge of intended wireless channels a priori. In addition, we extend the proposed approach to maximizing the a-fair utility functions of average user rates, and show that such a utility maximization can nicely balance the trade-off between the total throughput and fairness among users. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
303

Impact of interference on connectivity and outage performances in wireless communication networks: interference-based channel models

Unknown Date (has links)
In recent years, a plethora of wireless applications such as Bluetooth and Ultra-wide band (UWB) radio have emerged. This drastic increase has overly congested the spectrum. So, new networks such as cognitive radios that can solve the spectrum congestion have emerged. But in such networks, interference is introduced at the physical layer. We study and develop an interference model capable of capturing the intrinsic characteristics of the coexistence of such wireless applications. We investigate the effect of interference using device isolation probability or outage probability in presence Rayleigh and Nakagami-m fading at the physical layer and the impact of lognormal shadowing. We assume that the devices are either deterministically placed or randomly distributed according to a Poisson point process. We derive explicit expressions for the isolation probability and outage probability that give insight into how these channel impairments affect communication in these applications. We use computer simulations to validate our analytical results. / by Constantine Mukasa. / Thesis (M.S.C.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
304

Non-orthogonal multiple access for 5G : design and performance enhancement

Liu, Yuanwei January 2016 (has links)
Spectrum scarcity is one of the most important challenges in wireless communications networks due to the sky-rocketing growth of multimedia applications. As the latest member of the multiple access family, non-orthogonal multiple access (NOMA) has been recently proposed for 3GPP Long Term Evolution (LTE) and envisioned to be a key component of the 5th generation (5G) mobile networks for its potential ability on spectrum enhancement. The feature of NOMA is to serve multiple users at the same time/frequency/code, but with di erent power levels, which yields a signi cant spectral e ciency gain over conventional orthogonal multiple access (OMA). This thesis provides a systematic treatment of this newly emerging technology, from the basic principles of NOMA, to its combination with simultaneously information and wireless power transfer (SWIPT) technology, to apply in cognitive radio (CR) networks and Heterogeneous networks (HetNets), as well as enhancing the physical layer security and addressing the fairness issue. First, this thesis examines the application of SWIPT to NOMA networks with spatially randomly located users. A new cooperative SWIPT NOMA protocol is proposed, in which near NOMA users that are close to the source act as energy harvesting relays in the aid of far NOMA users. Three user selection schemes are proposed to investigate the e ect of locations on the performance. Besides the closed-form expressions in terms of outage probability and throughput, the diversity gain of the considered networks is determined. Second, when considering NOMA in CR networks, stochastic geometry tools are used to evaluate the outage performance of the considered network. New closed-form expressions are derived for the outage probability. Diversity order of NOMA users has been analyzed based on the derived outage probability, which reveals important design insights regarding the interplay between two power constraints scenarios. Third, a new promising transmission framework is proposed, in which massive multipleinput multiple-output (MIMO) is employed in macro cells and NOMA is adopted in small cells. For maximizing the biased average received power at mobile users, a massive MIMO and NOMA based user association scheme is developed. Analytical expressions for the spectrum e ciency of each tier are derived using stochastic geometry. It is con rmed that NOMA is capable of enhancing the spectrum e ciency of the network compared to the OMA based HetNets. Fourth, this thesis investigates the physical layer security of NOMA in large-scale networks with invoking stochastic geometry. Both single-antenna and multiple-antenna aided transmission scenarios are considered, where the base station (BS) communicates with randomly distributed NOMA users. In addition to the derived exact analytical expressions for each scenario, some important insights such as secrecy diversity order and large antenna array property are obtained by carrying the asymptotic analysis. Fifth and last, the fundamental issues of fairness surrounding the joint power allocation and dynamic user clustering are addressed in MIMO-NOMA systems in this thesis. A two-step optimization approach is proposed to solve the formulated problem. Three e cient suboptimal algorithms are proposed to reduce the computational complexity. To further improve the performance of the worst user in each cluster, power allocation coe cients are optimized by using bi-section search. Important insights are concluded from the generated simulate results.
305

Curvatura extrínseca de órbitas de representações / Extrinsic curvature of orbits of representations

Saturnino, Artur Bicalho 25 May 2017 (has links)
Seja K um grupo de Lie compacto agindo na esfera unitária S&#8319 por isometrias. Mostramos como uma cota superior para as curvaturas principais de uma órbita dessa ação pode ser usada (mas não é suficiente) para encontrar uma cota inferior para o diâmetro do espaço de órbitas S&#8319/K. Em seguida mostramos que existe uma órbita Kp com curvaturas principais majoradas por 4&#8730 14. / Let K be a compact Lie group acting on the unit sphere S&#8319 by isometries. We show how an upper bound on the principal curvatures of one orbit can be used (but is not sufficient) to obtain a lower bound for the diameter of the orbit space S&#8319/K. Then we show that there is an orbit Kp with principal curvatures bounded from above by 4&#8730 14.
306

Resource allocation for energy efficient device-to-device communications

Idris, Fakrulradzi January 2019 (has links)
Device-to-Device (D2D) communication is one of the technologies for next generation communication system. Unlike traditional cellular network, D2D allows proximity users to communicate directly with each other without routing the data through a base station. The main aim of this study is to improve the overall energy efficiency (EE) of D2D communications overlaying cellular system. To reduce the complexity of joint EE optimization, we decompose the main EE problem into two subproblems; resource efficiency (RE) optimization in the first stage and EE optimization for D2D pairs in the second stage. Firstly, we propose an alternative two-stage RE-EE scheme for a single cellular user equipment (CUE) and a D2D pair utilizing uplink spectrum. Later, we extend this work for multiple CUEs and D2D pairs by considering the downlink orthogonal frequency division multiple access (OFDMA). By exploiting a range of optimization tools including the Bisection method, interior point algorithm, fractional programming, Dinkelbach approach, Lagrange dual decomposition, difference of convex functions, and concave-convex procedure, the original non-convex problems are solved and we present iterative two-stage RE-EE solutions. Simulation results demonstrate that the proposed two-stage scheme for uplink scenario outperforms the cellular mode and dedicated mode of communications and the performance is close to the global optimal solution. The results also show that the proposed schemes for downlink resource sharing provide improved system EE performance with significant gain on EE for D2D users compared to a two-stage EE-EE solution, which is obtained numerically. Furthermore, the RE and EE optimization for non-orthogonal multiple access (NOMA) are considered to study the effect of users' access to the whole spectrum. The results indicate that the proposed RE scheme for NOMA with D2D communications achieves higher system EE compared to the OFDMA based schemes.
307

Resource allocation for downlink non-orthogonal multiple access (NOMA) system

Al-Abbasi, Ziad January 2017 (has links)
In wireless networks, the exponentially increasing demands for wireless services are encountered by the scarcity of the available radio resources. More bandwidth is required for not only accommodating the increasing number of users, but also to meet the requirements of the new services such as TV on demand, wireless gaming, and mobile Internet. Non-orthogonal multiple access (NOMA) has attracted a great attention recently due to its superior spectral efficiency (SE) over orthogonal multiple access and could play a vital role in improving the capacity of future networks. In particular, power based NOMA multiplexes the users in power domain via superposition coding (SC) and allows them to access the whole spectrum simultaneously while using successive interference cancellation (SIC) at the receiver side for signal detection. Since NOMA exploits the power domain for multiple access, power allocation is vital to achieve superior SE with NOMA. Resource allocation and its optimization are general methods used to further improve the NOMA based networks performance. In this thesis, the resource allocation in the downlink NOMA system is considered and optimized for different objective functions such as the sum rate and the energy efficiency (EE). In addition, the combination of NOMA and multiple antenna is considered using linear and non-linear precoders. In all the considered cases, suboptimal power allocation schemes are proposed and compared to the numerically obtained optimal one. Results confirm that NOMA outperforms OFDMA. It also support the effectiveness of the proposed schemes as compared to the existing ones and to the optimal one. The results also reveal that using multiple antennas with NOMA can significantly enhance the overall performance. Furthermore, a NOMA-multicell scenario is considered to test the proposed schemes under the effect of intercell interference (ICI). The results prove that the proposed methods effective as compared to the optimal one at a much lower complexity.
308

Interlaminar properties of 3D textile composites

Goktas, Devrim January 2016 (has links)
Multilayer composite materials have a high tendency to interlaminar delamination when they are subjected to out-of-plane loading, because of their low-stiffness in the through-thickness (T-T) direction. The main aim of this research was to improve the interlaminar fracture toughness (IFT) of textile composites by using stitching as a T-T reinforcement technique. The intention was to provide greater delamination resistance and also to enhance the interlaminar fracture toughness between adjacent layers. In this research, E-glass 2x2 twill weave structure fabric layers and an epoxy resin were chosen as the base materials. Three different types of stitching; including the commonly-used modified lock-stitch and orthogonal-stitch (OS) geometries, the single-yarn orthogonal-stitch (SOS) and a newly-developed double-yarn orthogonal-stitch (DOS), as well as five different stitch densities were used to reinforce the multilayer preform lay-ups. The resin infusion moulding method was used to manufacture the E-glass/Epoxy 3D textile composites. The effect of stitched reinforcement on the Mode I-IFT mechanism was examined by performing double cantilever beam (DCB) tests and the Mode II-IFT mechanism by performing four-point bend end-notched flexure (4ENF) tests, respectively. Optical microscopy and scanning electron microscopy (SEM) imaging techniques were used to study the fracture surfaces of the stitched composite specimens, to assess the improvement in IFT mechanisms imparted by the stitched reinforcement used. The effect of stitching was analysed by comparing the various stitching geometries, stitch densities and the mechanical properties highlighted by the Mode I-IFT and Mode II-IFT results. It was found that the use of the novel double-yarn orthogonal-stitch (DOS) reinforcement allied with the use of high stitch densities gave the greatest improvement on both Mode I-IFT and Mode II-IFT tests. Moreover, in every case, the use of DOS and high stitch densities gave a significant improvement of 74.5% in Mode I-IFT and 18.3% for Mode II-IFT tests when compared with unstitched samples. It has been shown that the novel DOS stitch geometry yields significant benefits over established stitching techniques in respect of stitched reinforcement for laminated composite preforms. Besides this, the double column 5x5 mm stitch pattern reveals the highest delamination resistance performance among all the stitching formations tested for Mode I-IFT and II-IFT.
309

Universalidade em matrizes aleatórias via problemas de Riemann-Hilbert

Silva, Guilherme Lima Ferreira da [UNESP] January 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2012Bitstream added on 2014-06-13T20:09:07Z : No. of bitstreams: 1 silva_glf_me_sjrp.pdf: 4891307 bytes, checksum: d50ac695507aa5097767c494c073e3f8 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho estudaremos a relação existente entre polinômios ortogonais e matrizes aleatórias. Exibiremos uma caracterização de polinômios ortogonais via problemas de Riemann-Hilbert, a qual tem se mostrado uma ferramenta única para obtenção de assintóticas de polinômios ortogonais. Posteriormente, estudaremos a teoria básica dos ensembles unitários de matrizes aleatórias. Por fim, mostraremos como a teoria de assintóticas de polinômios ortogonais pode ser usada na análise assintótica de estatísticas de matrizes aleatórias, nos levando a resultados de universalidade para os ensembles unitários / We will exhibit a characterization of orthogonal p olynomials via Riemann-Hilbert problems, which has been shown a powerful to ol for studying asymptotics of orthogonal polynomials. Posteriorly we will review the basic theory of unitary ensembles of random matrices. At the end, we will show how asymptotics of orthogonal polynomials can be used to study asymptotics of several statistics in random matrix theory, obtaining universality results for the unitary ensembles
310

CMOS ultra-wideband receiver front-end for multi-band OFDM systems. / CUHK electronic theses & dissertations collection

January 2008 (has links)
One of the key building blocks in a direct-conversion receiver is the low noise amplifier (LNA), which needs to provide a sufficient gain with a low noise figure for the RF front-end. However, the wideband nature of the receiver imposes harsh requirements on the LNA. It is difficult to achieve desired performance goals over the wide frequency range without excessive power consumption. To deal with this problem, this thesis proposes a novel band-selective UWB LNA. Utilizing the frequency hopping property of the MB-OFDM system, the proposed method switches the operating frequency of the LNA in real time following the MB-OFDM's hopping pattern so that optimal gain and noise performance can be achieved in each frequency band. Unlike the conventional approach, this LNA does not need to cover the entire band simultaneously, thus excessive power consumption is avoided. Fabricated in a 0.18-mum CMOS process, the proposed LNA achieves a peak power gain of 16 dB and a minimum noise figure of 2.74 dB at a low power consumption of less than 12 mW. / Other challenges in direct-conversion MB-OFDM receivers include ultra-short band switching time and wide LO frequency range. The single-sideband (SSB) generation is an attractive method for a fast-hopping multi-band LO generator. However, it involves LO frequency synthesis in an open-loop architecture, and thus the spurious-tone performance becomes critical in maintaining the LO signal integrity. Since the accuracy of the SSB generation and the spurious-tone power are difficult to control in a high-frequency operation, a 4.5-GHz SSB upconverter system was fabricated in a standard 0.18-mum CMOS process to investigate its performance against process variation. Some precise quadrature signal generation circuits such as divider and polyphase filter are employed. Experimental results show that the fabricated SSB upconverter system achieves image rejection of higher than 48 dB and spurious-tone suppression of higher than 32 dB. / The use of an active downconversion mixer is an alternative to relax the LNA requirements for direct-conversion MB-OFDM UWB receivers. However, its linearity becomes a problem when the bandwidth is ultra wide. In this thesis, the static current bleeding technique is used in the UWB downconversion mixer to improve its linearity. By injecting a DC current to the RF transconductor for linearization, the mixer's transconductance is enhanced while the noise from the LO switches is not affected. As a result, the conversion gain increases and the noise figure improves. Fabricated in a 0.18-mum CMOS process, the UWB downconversion mixer achieves a peak conversion gain of 4.1 dB, a peak IIP3 of --2.5 dBm, and a minimum double-sideband (DSB) noise figure of 11.7 dB at a low power consumption of 6 mW. / Ultra-wideband (UWB) is a short-range, high-data-rate communication system for Wireless Personal Area Networks (WPAN) based on the IEEE 802.15.3a physical layer standard. The allocated frequency range is from 3.1 to 10.6 GHz, in which 14 bands are defined. The first band group, which is assigned to the mandatory Mode 1 devices, consists of three bands. In UWB systems, multi-band orthogonal frequency division multiplexing (MB-OFDM) is the dominant modulation scheme for its high spectral flexibility and its similarity in communication architecture with other existing wireless communication standards, such as IEEE 802.11a/b/g and WiMAX. For practical reasons, the direct-conversion architecture is widely considered the best architecture to implement an MB-OFDM UWB receiver, which has advantages of low power consumption and high integration level. Nevertheless, there are some performance limitations in direct-conversion MB-OFDM UWB receivers. In this thesis, some key building blocks in the RF front-end of the direct-conversion MB-OFDM UWB receivers for use in Mode 1 devices are investigated to overcome such limitations. / Tang, Siu Kei. / "May 2008." / Adviser: Pun Kong Pang. / Source: Dissertation Abstracts International, Volume: 70-03, Section: B, page: 1857. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (p. 161-169). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Page generated in 0.0355 seconds