Spelling suggestions: "subject:"nosaccharomyces yeasts"" "subject:"ofsaccharomyces yeasts""
1 |
Nitrogen utilisation of selected non-Saccharomyces yeasts and the impact on volatile compound productionDe Koker, Simone 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: During fermentation, nitrogenous compounds serve as nutrients for the yeasts, which enable
their growth, functioning and maintenance of the yeasts cells. From a winemaking perspective,
a certain amount of nitrogen is required for the yeasts in order to avoid sluggish or stuck
fermentation. Moreover, nitrogen metabolism leads to the production of aroma compounds such
as higher alcohols, fatty acids and esters which contribute positively to overall sensory
characteristics of wine. Nitrogen metabolism (uptake of ammonium and amino acids) have been
extensively studied in Saccharomyces cerevisiae. Nonetheless, the fairly great variances
observed between strains in terms of preference for certain nitrogen sources and metabolism
thereof are not so well understood. Additionally, these mechanisms nitrogen metabolism of non-
Saccharomyces yeasts are even vaguer and simply assumed to be globally similar to those of
S. cerevisiae.
This study aimed to investigate the uptake of nitrogen compounds (ammonium and individual
amino acids) by selected non-Saccharomyces yeasts (Lachancea thermotolerans IWBT Y1240,
Torulaspora delbrueckii Biodiva TD291, Pichia kluyveri FrootZen, Metschnikowia pulcherrima
IWBT Y1123 and Metschnikowia pulcherrima Flavia) to assess the impact of fermentation
kinetics and the production of aroma compounds during sequential fermentations with S.
cerevisiae under different initial YAN concentrations, with 300 mg/L, 150 mg/L and 75 mg/L,
respectively). Fermentations were performed in a synthetic grape juice medium with pure and
sequential fermentations. The data showed that the assimilation of nitrogen compounds were
species specific. For example, L. thermotolerans preferred alpha amino nitrogen above
ammonia, where the opposite hold true for T. delbrueckii. Notable differences could also be
identified for the uptake of certain single amino acids. Irrespective of the initial YAN
concentrations during sequential fermentations, the yeasts only assimilated about half of the
initial YAN. The non-Saccharomyces yeasts did not influence fermentation performance during
sequential fermentations. However, a low initial YAN (75 mg/L) had a strong influence on the
fermentation kinetics and aroma compound production. The higher uptake (compare to S.
cerevisiae) of specific single amino acids by non-Saccharomyces yeasts (especially L.
thermotolerans), can be tentatively correlated with certain aroma compounds produced at the
end of fermentation. The results also revealed that agitation could impact overall fermentation
performance and aroma compound production. This study contributes to an improved
understanding of how different initial nitrogen concentrations affect growth, fermentation
performances and aroma compound production of wine-related yeasts under fermentative
conditions. Moreover, the uptake of single amino acids by selected non-Saccharomyces yeasts
had also been identified, which is a good starting point to better understand non-
Saccharomyces yeasts nitrogen requirements which may be used for the optimization of
nitrogen source addition, during alcoholic fermentation, when used in mixed fermentations in
order to ensure a complete alcoholic fermentation. To the best of our knowledge, the uptake of
single amino acids and YAN consumption by selected non-Saccharomyces yeasts under
fermentation conditions tested, have never been studied before. / AFRIKAANSE OPSOMMING: Tydens wynfermentasies dien talle stikstof komponente as voedingstowwe vir wyngis wat hul
groei, funksie en onderhoud bevorder. Van `n wynmaak perspektief word daar `n sekere
hoeveelheid stikstof benodig deur die wyngis om te verhoed dat slepende of onvolledige
fermentasies plaasvind. Verder lei stikstofmetabolisme na die produksie van aroma verbindings,
soos hoër alkohole, vlugtige vetsure en esters wat positief bydra tot die sensoriese
karaktereienskappe van wyn. Die stikstofmetabolisme (opneem ammonium en aminosure) is
deeglik nagevors in die wyngis Saccharomyces cerevisiae, maar die klein variasies
waargeneem tussen die gisras in terme van die voorkeur van sekere stikstof komponente is
egter nog onduidelik. Daarbenewens is die stikstofmetabolisme nog meer onbekend in nie-
Saccharomyces wyngis en word dit oor die algemeen aanvaar dat die werking van die
stikstofmetabolisme dieselfde is as in S. cerevisiae.
Hierdie studie het gestreef om die opneem van stikstof komponente (ammonium en aminosure)
te ondersoek van uitverkiesde nie-Saccharomyes gis (Lachancea thermotolerans IWBT Y1240,
Torulaspora delbrueckii Biodiva TD291, Pichia kluyveri FrootZen, Metschnikowia pulcherrima
IWBT Y1123 and Metschnikowia pulcherrima Flavia) deur te bepaal wat die impak is op die
groei-kinetika en op die produksie van aroma komponente gedurende gemengde kultuur
fermentasies met S. cerevisae onder verskillende aanvangs assimileerbare stikstof (300 mg/L,
150 mg/L en 75 mg/L). Fermentasies is in sintetiese druiwemos uitgevoer vir beide enkel en
gemengde kultuur fermentasies. Die resultate demonstreer dat die assimilasie van stikstof ras
spesifiek was. Byvoorbeeld, L. thermotolerans verkies alfa amino stikstof bo ammonium waar
die teenoorgestelde waar is vir T. delbrueckii. Beduidende verskille is ook waargeneem vir die
opneem van sekere individuele aminosure. Die wyngis het steeds net die helfte van die
assimileerbare stikstof opgeneem gedurende gemengde kultuur fermentasies ongeag die
aanvangsstikstof konsentrasies. Die nie-Saccharomyces gis het nie die fermentasie kinetika
beïnvloed tydens gemengde kultuur fermentasies nie. Daar was egter ook waargeneem dat `n
lae assimileerbare stikstof (75 mg/L) `n negatiewe invloed op die fermentasie kinetika sowel as
aroma produksie gehad het. Die hoër opname (vergelyking met S. cerevisiae) van sekere
aminosure deur nie-Saccharomyces gis, kan tydelik gekoppel word aan die produksie van
spesifieke aroma verbindings aan die einde van fermentasies. Die resultate het ook gewys dat
die toepassing van skud `n impak het op die fermentasie kinetika sowel as die produksie van
aroma komponente. Die studie dra by om beter te verstaan van hoe verskillende
aanvangsstikstof die groei, fermentasie kinetika en aroma produksie beïnvloed onder
fermentasie kondisies. Die opneem van sekere aminosure deur nie-Saccharomyces gis word
ook beskryf, wat `n goeie beginpunt is om beter te vertaan wat die stikstof vereistes vir die
geselekteerde wyngis is, wat gebruik kan word vir die optimisering van stikstofaanvullings, sodat
die risiko van probleemfermentasies verlaag sal word. So ver as wat ons kennis strek is die
opneem van aminosure en die gebruik van assimileerbare stikstof deur nie-Saccharomyces
wyngis onder fermentasie kondisies nog nie ondersoek nie.
|
2 |
Investigating the secretome of non-Saccharomyces yeast in model wineMostert, Talitha Tanya 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Proteins from various sources, including grape berry cells, yeast, bacteria and fining agents
e.g. albumin and casein, have previously been identified in wine. These proteins play various
critical roles in the functioning and survival of the organisms that produced them but also
exhibit oenological properties, once secreted in the juice/wine. Some of them can indeed be
beneficial to winemaking, by releasing aroma compounds from grape-derived precursors, or
detrimental to wine quality, by causing protein haze. Yeasts contribute significantly to the
protein pool during and after alcoholic fermentation. However, while the extracellular proteins
of Saccharomyces cerevisiae, the main wine yeast species, have been characterised, those
of non-Saccharomyces yeasts remain largely unknown, especially under winemaking
conditions. Although specific extracellular enzymes released by non-Saccharomyces yeasts
have been the focus of many studies in recent years, the targeted approaches used have
restricted our knowledge to these specific enzymes and excluded the other secreted
proteins. A more comprehensive insight into entire secretomes could improve our
understanding of how yeasts survive in wine and interact with other species in mixed culture
fermentations.
This study aims to characterise the exo-proteome of Saccharomyces and selected
non-Saccharomyces yeasts in pure and mixed cultures in a wine-like medium.
Fermentation kinetics were monitored and the extracellular proteins isolated at the end of
fermentation. M. pulcherrima hardly fermented whereas L. thermotolerans fermented slowly
but steadily. As expected S. cerevisiae completed the fermentation rapidly. In sequential
fermentations, the kinetics resembled those of the non-Saccharomyces yeasts for a period
before switching to that of S. cerevisiae. This period varied from 4 to 15 days for M. pulcherrima and L. thermotolerans respectively.
Visual observations of the protein content of the medium at the end of fermentation using 1D
and 2D SDS-PAGE gels as well as identification of these proteins using mass fingerprinting
revealed the large variety of proteins secreted and the influence of yeast interactions on
each other’s secretome. The fermentation kinetics observed could partially be explained by
the extent of the contribution of the different yeast to the protein content.
Proteins secreted by non-Saccharomyces yeasts lowered the potential of wine to form
protein haze, with both M. pulcherrima and L. thermotolerans in pure and mixed culture
fermentations showing lower haze formation than S. cerevisiae.
As far as we know, this is the first report on the secretome of non-Saccharomyces under
winemaking condition and the influence non-Saccharomyces proteins have on the protein
haze potential of wine, providing the basis for future investigations. / AFRIKAANSE OPSOMMING: Proteïene vanaf verskeie bronne (insluitend druiwe korrels, gis, bakterieë en verhelderings
agente bv. albumien en kaseïen) is reeds in wyn identifiseer. Hierdie proteïene speel
verskeie rolle in die funksionering en oorlewing van die organismes wat dit produseer, maar
beskik ook oor wynkundige eienskappe sodra dit in die sap of wyn uitgeskei word. Hoewel
sommige proteïene in wyn wel voordelig mag wees as gevolg van die vrystelling van aroma
komponente vanuit druif‐voorlopers, kan dit ook nadelig wees vir wyn kwaliteit deur die troebelheid
wat dit kan veroorsaak Gis dra aansienlik by tot die totale proteïen inhoud van wyn, beide
gedurende asook na alkoholiese fermentasie. Alhoewel die ekstrasellulêre proteïene van
Saccharomyces cerevisiae (die mees algemeen gebruikte gis vir wynmaak) reeds goed
gekarakteriseer is, is die proteïene van nie-Saccharomyces giste grootliks onbekend, veral
die wat tydens wynmaak vrygestel word. Gedurende die laaste paar jaar het verskeie
studies gefokus op spesifieke ekstrasellulêre ensieme wat deur nie-Saccharomyces giste
produseer word, maar geteikende benaderings het ons kennis beperk tot net hierdie
spesifieke ensieme, en enige ander afgeskeide proteïene uitgesluit. ʼn Meer omvattende
insig oor die algehele afgeskeide proteoom kan ons begrip van hoe gis in wyn oorleef en
interaksies tussen gis spesies in gemengde kultuur fermentasies verbeter
Hierdie studie streef om die sekretoom van Saccharomyces en geselekteerde
nie-Saccharomyces giste in suiwer en gemengde kultuur fermentasies van sintetiese wyn
medium te karakteriseer. Fermentasie kinetika is gemonitor en die ekstrasellulêre proteïene is teen die einde van
fermentasie geïsoleer. Metschnikowia pulcherrima het swak fermenteer terwyl Lachancea
thermotolerans stadig tog reëlmatig fermenteer het. Soos verwag, het S. cerevisiae vinnig tot
droog fermenteer. In agtereenvolgend geïnokuleerde fermentasies is die kinetika vir ʼn
tydperk soortgelyk aan die van die nie-Saccharomyces giste voordat dit oorskakel na die van
S. cerevisiae. Hierdie tydperk wissel respektiewelik vanaf 4 tot 15 dae vir M. pulcherrima en
L. thermotolerans.
Visuele waarnemings van die proteïen-inhoud van die medium aan die einde van die gisting
met behulp van 1D en 2D SDS-PAGE gels asook identifisering van hierdie proteïene met
behulp van massa vingerafdrukke onthul die groot verskeidenheid proteïene wat afgeskei
word, asook die invloed van die giste se interaksies op mekaar se sekretoom. Die
fermentasie kinetika waargeneem kan gedeeltelik verklaar word deur die omvang van die
bydrae van die verskillende gis tot die proteïen-inhoud. Proteïene wat afgeskei word deur
nie-Saccharomyces giste verlaag die potensiaal van wyn om proteïen troebelheid te vorm, met beide M. pulcherrima en L. thermotolerans (in suiwer en gemengde kultuur
fermentasies) wat minder troebelheid vorm as fermentasies met S. cerevisiae.
Sover ons kennis strek, is hierdie die eerste verslag oor die sekretoom van nie-
Saccharomyces onder wynmaak toestande en ook oor die invloed wat nie-Saccharomyces
proteïene op die proteïen troebelheid van wyn het, en vorm die basis vir toekomstige
navorsing. / Winetech and THRIP
|
3 |
Extracellular acid proteases of wine microorganisms : gene identification, activity characterization and impact on wineReid, Vernita Jennilee 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Non-Saccharomyces yeasts of oenological origin have previously been associated with spoilage or
regarded as undesired yeasts in wine. However, these yeasts have recently come under investigation for
their positive contribution towards wine aroma especially when used in sequential or co-inoculated
fermentations with Saccharomyces cerevisiae. These yeasts are also known to secrete a number of
enzymes that could be applicable in wine biotechnology. Amongst these enzymes are aspartic proteases.
The secreted proteases from some non-Saccharomyces yeast may play a role in protein haze reduction,
as demonstrated by some authors, while simultaneously increasing the assimilable nitrogen content of
the wine for the utilization and growth of fermentative microorganisms. Moreover, the proteases may have
an indirect effect on wine aroma by liberating amino acids that serve as aroma precursors. Although
many screenings have been performed detecting protease activity in non-Saccharomyces yeasts, no
attempts have been made to characterize these enzymes. This study set out to isolate and characterize
genes encoding extracellular aspartic proteases from non-Saccharomyces yeasts.
An enzymatic activity screening of a collection of 308 Saccharomyces and non-Saccharomyces yeasts,
isolated from grape must, was performed. The aspartic protease-encoding genes of two non-
Saccharomyces yeasts, which showed strong extracellular proteolytic activity on plate assays, were
isolated and characterized by in silico analysis. The genes were isolated by employing degenerate and
inverse PCR. One gene was isolated from Metschnikowia pulcherrima IWBT Y1123 and named MpAPr1.
The other putative gene was isolated from Candida apicola IWBT Y1384 and named CaAPr1. The
MpAPr1 gene is 1137 bp long, encoding a 378 amino acid putative protein with a predicted molecular
weight of 40.1 kDa. The CaAPr1 putative gene is 1101 bp long and encodes a 367 amino acid putative
protein with a predicted molecular weight of 39 kDa. These features are typical of extracellular aspartic
proteases. The deduced protein sequences showed less than 40% homology to other yeast extracellular
aspartic proteases. By heterologous expression of MpAPr1 in S. cerevisiae, it was confirmed that the
gene encodes an extracellular acid protease. The expression of MpAPr1 was shown to be induced in
media containing proteins as sole nitrogen source and repressed when a preferred nitrogen source was
available. The gene was expressed in the presence of casein, bovine serum albumin (BSA) and grape
juice proteins and repressed in the presence of ammonium sulphate. Expression was most induced in the
presence of grape juice proteins, which was expected since these proteins are present in the natural
habitat of the yeast. A genetic screening confirmed the presence of the MpAPr1 gene in 12 other
M. pulcherrima strains isolated from grape juice. The extracellular protease activity of the strains was also
visualized on plates. As far as we know, this is the first report on the genetic characterization of secreted
aspartic proteases from non-Saccharomyces yeasts isolated from grape must and provides the
groundwork for further investigations. / AFRIKAANSE OPSOMMING: Nie-Saccharomyces giste is voorheen met wynbederf geassosieer en hul teenwoordigheid in wyn is
ongewens. Hierdie giste is onlangs ondersoek vir hulle positiewe bydrae tot wyn aroma, in veral
sekwensiële en ko-inokulerings met Saccharomyces cerevisiae. Sommige van die nie-Saccahromyces
giste skei ‘n verskeidenhied ensieme af wat moontlik vir die wynmaker van nut kan wees. Een groep van
hierdie ensieme is die aspartiese suurproteases. Soos deur sommige navorsers aangetoon word, kan die
proteases die vorming van proteïenwaasverlaging, terwyl dit terselfdertyd die assimilerende
stikstofinhoud van die wyn vir die gebruik en groei van fermentasie-mikroörganismes verhoog. Die
proteases kan moontlik ook ‘n indirekte uitwerking op die aromaprofiel van die wyn hê deur die vrystelling
van aminosure wat as aromavoorlopers dien. Alhoewel baie studies gedoen is wat die ekstrasellulêre
teenwoordigheid van proteases bevestig in nie-Saccharomyces giste wat van druiwesap/wyn afkoms is,
is daar geen dokumentasie oor die genetiese karakterisering van hierdie ensieme beskikbaar nie. Die
doel van hierdie studie was om gene wat aspartiese proteases in nie-Saccharomyces giste enkodeer, te
isoleer en gedeeltelik te karakteriseer.
‘n Versameling van 308 Saccharomyces en nie-Saccharomyces giste wat uit druiwe sap geïsoleer is, is
gesif vir ensiematiese aktiwiteit deur plaattoetse uit te voer. Twee gene wat aspartiese protease
enkodeer, is geïsoleer van twee nie-Saccharomyces giste. Dit hetpositief gedurende die aktiwiteitstoetse
getoets en is deur in silico–analise gekarakteriseer. Die gene is deur die uitvoering van gedegenereerde
en inverse PKR geïdentifiseer. Een geen is vanaf Metschnikowia pulcherrima IWBT Y1123 geïsoleer en
is MpAPr1 genoem, terwyl die ander van Candida apicola IWBT Y1384 geïsoleer en CaAPr1 genoem is.
Die MpAPr1-geen is 1137 bp lank en enkodeer ‘n proteïen wat uit 378 aminosure bestaan met ‘n
voorspelde molekulêre massa van 40.1 kDa. Daar teenoor is die CaAPr1-geen 1101 bp lank en enkodeer
vir ‘n proteïen wat uit 367 aminosure met ‘n molekulêre massa van 39 kDa bestaan. Hierdie eienskappe
is kenmerkend van aspartiese protease. Die afgeleide proteïenvolgorde het minder as 40% homologie
met ander ekstrasellulêre aspartiese proteases vertoon, wat dui op die nuwigheid van hierdie ensieme.
Die MpAPr1-geen is heterologies in S. cerevisiae YHUM272 uitgedruk en dit het bevestig dat die geen
inderdaad ‘n ekstrasellulêre aspartiese protease enkodeer. Die MpAPr1-geen is uitgedruk in media wat
alleenlik proteïen as stikstofbron bevat het, terwyl dit onderdruk is in gevalle waar ‘n verkose stikstofbron
beskikbaar was. Die geen is uitgedruk in die teenwoordigheid van kaseïen, BSA en proteïene afkomstig
vanaf druiwesap en in die teenwoordigheid van ammoniumsulfaat onderdruk. Die hoogste uitdrukking
was in die teenwoordigheid van druifproteïene. Hierdie proteïene is teenwoordig in die natuurlike habitat
van die gis en is dus dalk ‘n bekende stikstofbron vir die gis. ‘n Genetiese sifting het die teenwoordigheid
van die MpAPr1-geen in 12 ander M. pulcherrima–rasse, wat ook van wynkundige oorsprong is, bevestig.
Die aspartiese protease-aktiwiteit van die 12 rasse is ook op agarplate waargeneem. Na ons wete, is dit
die eerste verslag oor die genetiese karakterisering van afgeskeide aspartiese proteases van nie-
Saccharomyces giste van wynkundige oorsprong en verskaf die grondslag vir verdere ondersoek.
|
4 |
Expression and purification of recombinant extracellular proteases originating from non-Saccharomyces yeastsTheron, Louwrens Wiid 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: During wine fermentation, yeasts release extracellular enzymes that significantly impact wine
properties. While the extracellular proteins of Saccharomyces cerevisiae have been
characterised, those of non-Saccharomyces yeasts remain largely unknown. Most of these
enzymes break down sugar polymers or catalyse the liberation of glycosidically-bound
molecules. Another category of enzymes of oenological interest is represented by acid
proteases that are able to prevent or reduce protein haze, as reported in literature, while
simultaneously increasing the assimilable nitrogen content of wine. The liberation of amino
acids from peptides and proteins that serve as aroma precursors may also have an indirect
effect on wine aroma. In a recent study performed at the Institute for Wine Biotechnology
(IWBT), the sequences of two aspartic proteases were retrieved from non-Saccharomyces
yeast species isolated from South African wines. The genes, MpAPr1 and CaAPr1, were
isolated from two non-Saccharomyces species, Metschnikowia pulcherrima IWBT Y1123 and
Candida apicola IWBT Y1384, respectively. However, no further characterization was
undertaken. This study aimed to clone these two genes into a recombinant bacterial host for
expression and purify the corresponding enzymes as a first step toward characterizing their
kinetic properties. Considering that some non-Saccharomyces species have been shown to
produce more than one acid protease, an additional aim was to identify novel acid proteases
within M. pulcherrima IWBT Y1123.
Cloning of the genes and transformation of the expression vectors into E. coli were achieved.
Optimal conditions for induced expression were established following extensive optimization.
Furthermore, while native extraction of the recombinant proteins was unsuccessful, denaturing
conditions allowed their recovery, suggesting that the recombinant proteins are encapsulated
into inclusion bodies. Recombinant MpAPr1 was purified by using a nickel based column
system and mass fingerprinting of the purified enzyme (MpAPr1) confirmed its identity.
Purification was followed by refolding experiments, but yielded poor recovery of active enzymes.
Unfortunately, recombinant expression of CaAPr1 could not be observed for reasons yet to be
elucidated that may include the large sequence dissimilarities between CaAPr1 and MpAPr1.
Finally, Southern blot analysis on the genomes of M. pulcherrima IWBT Y1123 and C. apicola
IWBT Y1384 revealed that both possess at least one additional protease other than those
previously described. Further analysis of the extracellular proteome of M. pulcherrima IWBT
Y1123 also confirmed the presence of at least one enzyme able to hydrolyze BSA at a low pH.
Unfortunately, mass fingerprinting performed on the entire extracellular proteome and on small
groups of proteins thereof did not allow the identification of these enzymes. / AFRIKAANSE OPSOMMING: Gedurende fermentasie van druiwe sap skei gis ekstrasellulêre ensieme af wat ‘n aanmerklike
impak op wyn eienskappe het. Terwyl die ekstrasellulêre proteïene vanaf Saccharomyces
cerevisiae al gekarakteriseer is, bly die van nie-Saccharomyces spesies grootliks onbekend.
Meeste van hierdie ensieme breek suiker polimere af of kataliseer die vrystelling van
glikosiediese verbonde molekules. ‘n Ander klas van ensieme wat van belang is vir oenologie
word voorgestel deur proteases wat in staat is daartoe om proteïenewaas te verminder, soos
voorheen geraporteer is in literatuur, terwyl dit terselfde tyd die assimileerbare stikstof inhoud
kan vermeerder. Die vrystelling van aminosure vanaf peptiede en/of proteïene wat as aroma
voorlopers dien mag ook ‘n indirekte effek op die wyn se aroma profiel hê. In ‘n onlangse studie
wat uitgevoer is by die Instituut vir Wynbiotegnologie (IWBT) was die volgordes van twee
aspartiese proteases bepaal vanaf twee nie-Saccharomyces gis spesies wat geisoleer was uit
Suid-Afrikaanse wyne. Die gene MpAPr1 en CaAPr1, was afsonderlik geisoleer vanuit twee nie-
Saccharomyces giste, Metschnikowia pulcherrima IWBT Y1123 en Candida apicola IWBT
Y1384. Egter was daar geen verder karakterisering van hierdie ensieme nie. Die doel van
hierdie studie is om die bogenoemde gene in ‘n rekombinante bakteriese gasheer te kloneer vir
uitdrukking en suiwering as ‘n eerste stap tot karakterisering van hul kinetiese eienskappe. Om
in ag te neem dat sommige nie-Saccharomyces spesies meer as een protease produseer was
‘n aditionele mikpunt om vir nuwe suur proteases te soek binne M. pulcherrima IWBT Y1123.
Klonering van hierdie gene en transformasie van die uitdrukkings vektore in E. coli was
suksesvol. Optimale kondisies vir die induksie van ekspressie was bevestig na omvattende
optimalisering. Verder, terwyl inheemse ekstraksie van die rekombinante proteïene onsuksesvol
was, het denatureerende kondisies toegelaat vir suksesvolle ekstraksie, wat voorgestel het dat
die rekombinante proteïene geinkapsileer word in inklusie liggame. Rekombinante MpAPr1 was
gesuiwer deur gebruik te maak van ‘n niekel gebaseerde kolom sisteem en massa petied
fingerafdrukke van die gesuiwerde ensiem (MpAPr1) het die identiteit bevestig. Suiwering was
gevolg deur hervouing eksperimente, maar het swak opbrengste gelewer van die aktiewe
ensiem. Ongelukkig kon die rekombinante ekspressie van CaAPr1 nie gevisualiseer word nie vir
redes wat nog bevestig moet word, maar wat mag behels dat daar groot volgorde veskille
tussen MpAPr1 en CaAPr1 kan wees. Uiteindelik was Southern blot hibridiseering analises
uitgevoer op die genome van albei M. pulcherrima IWBT Y1123 en C. apicola IWBT Y1384 wat
voorgestel het dat albei ten minste een addisionele protease, anders as die wat voorheen
geidentifiseer was, bevat. Verder analiese van die ekstrasellulêre proteoom van M. pulcherrima
IWBT Y1123 het ook die teenwoordigheid van ten minste een ensiem bevestig wat die vermoë
het om BSA te hidroliseer by ‘n lae pH. Ongelukkig het massa peptied vingerafdrukbepaling wat uitgevoer was op die hele ekstrasellulêre proteoom en op klein groepe protein nie identifikasie
van hierdie ensieme bevestig nie.
|
5 |
ISOLAMENTO, IDENTIFICAÇÃO E CARACTERIZAÇÃO DE LEVEDURAS ISOLADAS DO MIRTILO / ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF BLUEBERRY S YEASTSLucion, Fernanda Bortoluzzi 13 March 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / The chemical profile of a fermented product depends upon the raw basic material and the fermentative microbiota. The yeast microbiota is responsible for fermentation and contributes to fermented product aroma by several mechanisms. The study of this microbiota is relevant because the microorganisms utilize the constituents of the raw basic material and transform them into aroma or flavour impacting components. Autochthonous yeasts belonging to the blueberry microbiota of two different cultivars, Florida M and Climax, were investigated by analyzing the fermentative capacity, the hydrogen sulfide (H2S) production, the film-forming ability, killer feature, sensitivity and neutrality to killer factor. Three methods employed to distinguish autochthonous yeast species were used: MALDI-TOF MS, PCR and PCR-RFLP of ITS region of rRNA gene and, if necessary, genetic sequencing of the D1/D2 26S rRNA region. The species Hanseniaspora uvarum, Hanseniaspora opuntiae, Candida sorboxylosa, Metschnikovia kunwiensis, Candida bentonensis, Candida oleophila/Candida railenesis and Candida quercitrusa were found on the surface of Florida M. Hanseniaspora uvarum, Issatchenkia terricola, Candida sorboxylosa, Candida asiatica, Candida oleophila/railenensis, Issatchenkia hanoiensis and Kazachstania intestinalis were of berries of Climax variety. Only three species were found in both varieties: H. uvarum, C. sorboxylosa and C. oleophila/railenensis. The species H. uvarum was the predominant in both cultivars, representing 70.4% and 78% of yeasts isolated from the surface of the Florida M and Climax, respectively. The killer feature was not detected in any strain isolated from Florida M. From strains isolated from Climax, only one strain C. asiatica 133 MCMCF/14 was killer against the 26B. Moreover, the K. intestinalis 91 MCMCF/14 was the only sensitive when tested against both the patterns killer S. cerevisiae K1 (Lallemand), EMBRAPA 1B, EMBRAPA 91B and the killer yeast C. asiatica 133 MCMCF/14. All strains showed low fermentative capacity and all of them were non-Saccharomyces yeasts. All yeasts isolated from Florida M produced H2S. Only four strains from Climax did not produce H2S. The highest evolution of H2S was observed with the genus Issatchenkia and with the majority strains of C. sorboxylosa. The species C. oleophila/C. railenensis showed low production of this parameter. The fermentation process of fermented products from blueberries of both Florida and Climax can be severely affected by this kind of autochthonous yeasts. / O perfil químico de um produto fermentado depende da matéria prima de base e da microbiota que participam do processo fermentativo. No presente estudo, leveduras pertencentes à microbiota do mirtilo foram investigadas, isolando-se estes micro-organismos da superfície de duas diferentes cultivares de mirtilo, Florida M e Climax. Foram avaliadas a capacidade fermentativa, produção de sulfeto de hidrogênio (H2S), formação de filme, característica killer, sensibilidade e neutralidade a este fator. Três metodologias para identificação foram empregadas: espectrometria de massas MALDI-TOF, análise da região ITS do gene rRNA por PCR-RFLP e, quando necessário, sequenciamento genético da região D1/D2 do 26S do gene rRNA. A cultivar Florida M apresentou em sua superfície as espécies Hanseniaspora uvarum, Hanseniaspora opuntiae, Candida sorboxylosa, Metschnikovia kunwiensis, Candida bentonensis, Candida oleophila/Candida railenensis e Candida quercitrusa. Na cultivar Climax, foram encontradas as espécies Hanseniaspora uvarum, Issatchenkia terricola, Candida sorboxylosa, Candida asiatica, Candida oleophila/Candida railenesis, Issatchenkia hanoiensis e Kazachstania intestinalis. Apenas três espécies foram comuns as duas cultivares, sendo elas H. uvarum, C. sorboxylosa, Candida oleophila/Candida railenesis. H. uvarum foi a espécie predominante em ambas cultivares, representando 70,4% e 78% do total de leveduras isoladas da cv. Florida M e Climax, respectivamente. A característica killer não foi detectada em nenhuma linhagem isolada da cv. Florida M. Na cv. Climax, apenas a linhagem C. asiatica 133 MCMCF/14 se comportou como killer. A linhagem K. intestinalis 91 MCMCF/14 foi a única que demonstrou sensibilidade em relação a todas as linhagens killer padrão K1 (Lallemand), EMBRAPA 1B, EMBRAPA 91B. Esta mesma linhagem se mostrou sensível também à linhagem isolada da cultivar Climax C. asiatica 133 MCMCF/14. Todas as linhagens isoladas de ambas cultivares apresentaram baixa capacidade fermentativa e todas elas foram identificadas como sendo não-Saccharomyces. Houve de moderada a alta produção de H2S em 21 e 34% nas linhagens isoladas das cultivares Florida M e Climax, respectivamente. A produção máxima de H2S se destacou principalmente em linhagens das espécies I. terricola e C. sorboxylosa. A maioria das linhagens de leveduras da espécie C. oleophila/C. railenensis apresentaram baixa produção deste gás. O processo de produção de fermentados de mirtilo tanto da cultivar Florida M como da cultivar Climax pode ser severamente afetado por este tipo de leveduras autóctones.
|
6 |
Metabolization of the glycation compounds 3-deoxyglucosone and 5-hydroxymethylfurfural by Saccharomyces yeastsKertsch, Anna-Lena, Brysch-Herzberg, Michael, Hellwig, Michael, Henle, Thomas 26 February 2024 (has links)
The Maillard reaction products (MRPs) 3-deoxyglucosone (3-DG) and 5-hydroxymethylfurfural (HMF), which are formed during the thermal processing and storage of food, come into contact with technologically used yeasts during the fermentation of beer and wine. In order for the yeast cells to work efficiently, handling of the stress-inducing carbonyl compounds is essential. In the present study, the utilization of 3-DG and HMF by 13 Saccharomyces yeast strains (7 brewer’s yeast strains, 1 wine yeast strain, 6 yeast strains isolated from natural habitats) was investigated. All yeast strains studied were able to metabolize 3-DG and HMF. 3-DG is mainly reduced to 3-deoxyfructose (3-DF) and HMF is completely converted to 2,5-bishydroxymethylfuran (BHMF) and 5-formyl-2-furancarboxylic acid (FFCA). The ratio of conversion of HMF to BHMF and FFCA was found to be yeast strain-specific and no differences in the HMF stress tolerance of the yeast strains and species were observed. After incubation with 3-DG, varying amounts of intra- and extracellular 3-DF were found, pointing to a faster transport of 3-DG into the cells in the case of brewer’s yeast strains. Furthermore, the brewer’s yeast strains showed a significantly higher 3-DG stress resistance than the investigated yeast strains isolated from natural habitats. Thus, it can be shown for the first time that Saccharomyces yeast strains differ in their interaction of 3-DG induced carbonyl stress.
|
Page generated in 0.039 seconds