• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 26
  • 9
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 200
  • 200
  • 46
  • 37
  • 35
  • 32
  • 28
  • 23
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Molecular and functional characterization of the long non-coding RNA SSR42 in \(Staphylococcus\) \(aureus\) / Molekulare und funktionelle Charakterisierung der langen nicht-kodierenden RNA SSR42 in \(Staphylococcus\) \(aureus\)

Horn, Jessica January 2019 (has links) (PDF)
Staphylococcus aureus asymptomatically colonizes the skin and anterior nares of 20-30% of the healthy human population. As an opportunistic human pathogen it elicits a variety of infections ranging from skin and soft tissue infections to highly severe manifestations such as pneumonia, endocarditis and osteomyelitis. Due to the emergence of multi resistant strains, treatment of staphylococcal infections becomes more and more challenging and the WHO therefore classified S. aureus as a “superbug”. The variety of diseases triggered by S. aureus is the result of a versatile expression of a large set of virulence factors. The most prominent virulence factor is the cytotoxic and haemolytic pore-forming α-toxin whose expression is mediated by a complex regulatory network involving two-component systems such as the agr quorum-sensing system, accessory transcriptional regulators and alternative sigma-factors. However, the intricate regulatory network is not yet understood in its entirety. Recently, a transposon mutation screen identified the AraC-family transcriptional regulator ‘Repressor of surface proteins’ (Rsp) to regulate haemolysis, cytotoxicity and the expression of various virulence associated factors. Deletion of rsp was accompanied by a complete loss of transcription of a 1232 nt long non-coding RNA, SSR42. This doctoral thesis focuses on the molecular and functional characterization of SSR42. By analysing the transcriptome and proteome of mutants in either SSR42 or both SSR42 and rsp, as well as by complementation of SSR42 in trans, the ncRNA was identified as the main effector of Rsp-mediated virulence. Mutants in SSR42 exhibited strong effects on transcriptional and translational level when compared to wild-type bacteria. These changes resulted in phenotypic alterations such as strongly reduced haemolytic activity and cytotoxicity towards epithelial cells as well as reduced virulence in a murine infection model. Deletion of SSR42 further promoted the formation of small colony variants (SCV) during long term infection of endothelial cells and demonstrated the importance of this molecule for intracellular bacteria. The impact of this ncRNA on staphylococcal haemolysis was revealed to be executed by modulation of sae mRNA stability and by applying mutational studies functional domains within SSR42 were identified. Moreover, various stressors modulated the transcription of SSR42 and antibiotic challenge resulted in SSR42-dependently increased haemolysis and cytotoxicity. Transcription of SSR42 itself was found under control of various important global regulators including AgrA, SaeS, CodY and σB, thereby illustrating a central position in S. aureus virulence gene regulation. The present study thus demonstrates SSR42 as a global virulence regulatory RNA which is important for haemolysis, disease progression and adaption of S. aureus to intracellular conditions via formation of SCVs. / Staphylococcus aureus kolonisiert asymptomatisch als Kommensal die Haut und Nasenschleimhäute von circa 20-30% der gesunden Weltbevölkerung. Als opportunistisches Humanpathogen löst S. aureus dagegen eine Reihe von Krankheiten aus, die von leichten Hautinfektionen und Abszessen bis hin zu schwerwiegenden und lebensbedrohlichen Krankheitsformen wie Pneumonie, Endokarditis und Osteomyelitis reichen können. Die Behandlung von Staphylokokken-Infektionen stellt aufgrund der Entstehung multi-resistenter Stämme vermehrt eine Herausforderung dar, weshalb S. aureus von der WHO als „superbug“ klassifiziert wurde. Die Vielzahl an möglichen Krankheitsformen sind das Ergebnis der anpassungsfähigen und koordinierten Expression einer Vielzahl von Virulenzfaktoren. Der dabei wohl bedeutendste und am besten charakterisierte Virulenzfaktor ist das porenbildende α-toxin, dessen zytotoxische und hämolytische Aktivität für eine Reihe diverser Krankheiten verantwortlich ist. Die Expression dieses Toxins wird durch ein komplexes, bis jetzt noch nicht komplett verstandenes, regulatorisches Netzwerk gesteuert, das sowohl Zwei-Komponentensysteme wie das agr Quorum-sensing System, diverse akzessorische transkriptionelle Regulatoren sowie alternative Sigmafaktoren beinhaltet. Kürzlich wurde in einem Transposon-Mutanten-Screen der AraC-Familie transkriptionelle Regulator „Repressor of surface proteins” (Rsp) identifiziert, der die Expression diverser Virulenz-assoziierter Faktoren beeinflusste. Eine Deletion von rsp ging, neben reduzierter Hämolyse und Zytotoxizität, auch mit dem kompletten Verlust der Transkription einer 1232 nt langen nicht-kodierenden RNA, SSR42, einher. Diese Doktorarbeit befasst sich mit der molekularen und funktionellen Charakterisierung dieser nicht-kodierenden RNA. Mittels Transkriptom- und Proteomanalysen wurden eine SSR42 Deletionsmutante sowie eine Doppelmutante in SSR42 und rsp charakterisiert und SSR42 als Hauptfaktor der Rsp-vermittelten Virulenzregulation identifiziert. Neben weitreichenden Veränderungen auf trans-kriptioneller und translationaler Ebene wiesen Mutanten in SSR42 eine stark reduzierte hämolytische und zytotoxische Aktivität sowie verringerte Virulenz in einem murinen Infektionsmodell auf. Eine Deletion von SSR42 begünstigte weiterhin die Bildung von sog. „small colony variants“ während Langzeit-Infektionen von Endothelzellen und demonstrierte die Bedeutung dieser nicht-codierenden RNA für intrazelluläre Staphylokokken. Die regulatorische Wirkung von SSR42 auf die hämolytische Aktivität von S. aureus wurde in dieser Arbeit aufgeklärt. Dabei konnte ein stabilisierender Einfluss der nicht-kodierenden RNA auf sae mRNA nachgewiesen werden. Weiterhin wurde SSR42 durch Mutagenese-Studien auf molekularer Ebene charakterisiert, wobei funktionelle und stabilisierende Domänen identifiziert wurden. Ebenso wurden in dieser Arbeit diverse Stressoren und Antibiotika erfasst, die eine modulatorische Wirkung auf die Transkription von SSR42 ausüben. Neben einer Erhöhung der Transkription von SSR42 resultierte eine Behandlung von S. aureus mit sub-inhibitorischen Konzentrationen von Antibiotika in einer drastischen, SSR42-abhängigen, Steigerung der hämolytischen und zytotoxischen Aktivität. Mithilfe von Promotoraktivitätsstudien wurde der Einfluss diverser Regulatoren wie AgrA, SaeS, CodY und σB auf die transkriptionellen Regulation von SSR42 identifiziert und SSR42 somit eine zentrale Rolle in der Regulation von Virulenzgenen verliehen. SSR42 wurde demnach als ein neuartiger globaler Regulator identifiziert, der eine wichtige Rolle für Hämolyse, den Krankheitsverlauf sowie bei der Anpassung an intrazelluläre Bedingungen, über die Bildung von „small colony variants“, spielt.
22

New insights into cancer genes haploinsufficiency and noncoding RNA in human cancer /

Yoon, Heejei. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2007 Aug 10
23

The role of SNORD116 in Prader-Willi syndrome

Purmann, Carolin January 2012 (has links)
No description available.
24

Brain-specific microRNAs induce neurogenesis through indirect regulation of Mef2C activity

Goff, Loyal Andrew. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Cell and Developmental Biology." Includes bibliographical references (p. 96-110).
25

Accurate annotation of non-coding RNAs in practical time /

Weinberg, Zasha. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (p. 257-268).
26

Endogenous and antiviral RNA silencing pathways in Arabidopsis /

Chapman, Elisabeth J. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 112-128). Also available on the World Wide Web.
27

Characterization of long non-coding RNAs in the Hox complex of Drosophila

Coyne, Victoria January 2017 (has links)
Long non-coding RNAs (lncRNAs) are often defined as transcripts >200nts that have no discernable protein-coding ability (Quinn and Chang, 2016). Although relatively little is understood about the molecular mechanisms of lncRNA function, they have established roles in regulation of gene expression during development, cell differentiation and pluripotency (Fatica and Bozzoni, 2014; Luo et al., 2016; Quinn and Chang, 2016; Rinn and Chang, 2012) across vastly diverse organisms ranging from plants to humans (Ulitsky and Bartel, 2013). LncRNAs have also been associated with numerous pathological conditions, such as cancers (Brunner et al., 2012), cardiovascular disease and neurodegeneration (Chen et al., 2013). Investigations into lncRNAs in wide ranging organisms, have revealed that many influence gene activity by forming ribonucleoprotein complexes that affect the conformational state of chromatin (Rinn and Chang, 2012). A genomic region that has revealed several functional lncRNAs in diverse organisms is the Hox complex (Pauli et al., 2011; Pettini, 2012; Rinn et al., 2007). The Hox complex encodes a set of transcription factors (TFs), physically clustered in the genome, which provide morphological identity along the anterior to posterior axis of developing embryos (Mallo and Alonso, 2013), throughout the majority of bilatarian animals (Moreno et al., 2011). Misexpression or mutation of Hox genes causes morphological and pathophysiological defects (Quinonez and Innis, 2014). We investigated clustering of lncRNAs throughout the D. melanogaster genome using available annotations and carried out RNA-seq in D. virilis to expand the repertoire of lncRNAs and identify clusters of lncRNAs. We found the Hox complex to be heavily enriched with lncRNAs in both organisms, and syntenic transcripts from D. melanogaster could be identified in D. pseudoobscura and D. virilis. Several lncRNAs aligned with polycomb response elements (PREs); transcription of PREs has previously been linked to a switch in their activity (Herzog et al., 2014). However, we found that transcribed PREs in D. melanogaster move positions relative to the protein-coding genes in other drosophilids, whilst the transcriptional units remain in the same syntenic region. Conservation of syntenic transcripts without evidence of remaining a PRE suggest that the transcription is not linked to PRE function, agreeing with recent findings that transcription of PREs does not affect their function (Kassis and Muller, 2015). We investigated functions of a novel lncRNA and adjacent PRE in the Hox complex by ectopic expression and utilization of other genetic manipulation tools. Overexpression of either the lncRNA or PRE and partial duplication of the lncRNA caused phenotypes such as missing halteres and/or T3 legs, misshaped T3 legs or malformed abdominal segments. The observations that ectopic expression of this lncRNA and an adjacent regulatory element from the Hox complex causes phenotypes that can be linked to adjacent Hox gene misregulation, Antp and Ubx, suggest that they are likely to have roles in the regulation of at least one of these Hox genes.
28

The Role of Non-­Coding RNA in Plant Stress

MacPherson, Cameron R. 12 1900 (has links)
Post-transcriptional gene silencing (PTGS) is a powerful mechanism that can be adapted to genetically modify crop plants. PTGS operates in many plant signaling pathways including those mediating stress responses. Given the small number of miRNAs known, research on the characterization of stress-related micro-RNA (miRNA) and their targets could provide the basis for engineering stress tolerant traits in crops. Indeed, several examples of miRNA mediated crop tolerance have been reported. In the research presented here, we aimed to analyze the role of small non-coding RNA (smRNA) pathways involved in plant stress. In particular, we focused on miRNA-mediated PTGS in phosphate (Pi) starvation. The analysis was split into two research projects. First, to identify potential miRNA targets we began by analyzing the response and recovery of coding and long non-coding RNAs (lncRNA) to Pi starvation in shoot and root. The results obtained were the first genome-wide description of the root’s Pi starvation response and recovery. We found that the root's response involved a widely different set of genes than that of the shoot. In the second research project, the results of the first project were correlated with the responses of miRNA and trans-acting small-interfering RNA (tasiRNA) during Pi starvation. Many miRNA circuits have been predicted before, however, tasiRNA circuits are not as well defined. Therefore, we made use of the double-stranded RNA-binding protein 4 (DRB4) smRNA libraries to enhance our prediction of tasiRNAs. Altogether, we provided evidence to support the following miRNA-mRNA pairs that may function in Pi starvation: IPS1:miR399:PHO2; miR399:RS4; miR399:NF-YA10; miR398:CSD1/2; miR2111:TPS11; miR164:NAC6; miR157:TMO7; miR157:PSB28; RPS2:miR169:IPS2; miR397:LAC2; TAS4:PAP1; NR1:PAP1; and Chr3_1967672:TMO7. In general, we found that non-miR399 related circuits were active only during the root’s recovery from Pi starvation. The functional roles of the genes targeted by these PTGS circuits suggested that the local root response to Pi starvation was influenced by the plant's systemic response pathways via PHR1-mediated PTGS. Finally, since many PTGS targets function to modulate concentrations of reactive oxygen species and sucrose, we hypothesized that the candidate PTGS circuits found in our research mediate a general stress recovery process by modulating metabolites involved in signaling pathways.
29

The study of microRNAs in nasopharyngeal carcinoma

Ha, Wai Yan 01 January 2013 (has links)
No description available.
30

Complex transcription units in Saccharomyces cerevisiae

Nguyen, Tania January 2013 (has links)
No description available.

Page generated in 0.0599 seconds