• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MSF process modelling, simulation and optimisation : impact of non-condensable gases and fouling factor on design and operation : optimal design and operation of MSF desalination process with non-condensable gases and calcium carbonate fouling, flexible design operation and scheduling under variable demand and seawater temperature using gPROMS

Said, Said Alforjani R. January 2012 (has links)
Desalination is a technique of producing fresh water from the saline water. Industrial desalination of sea water is becoming an essential part in providing sustainable source of fresh water for a large number of countries around the world. Thermal process being the oldest and most dominating for large scale production of freshwater in today's world. Multi-Stage Flash (MSF) distillation process has been used for many years and is now the largest sector in the desalination industry. In this work, a steady state mathematical model of Multistage Flash (MSF) desalination process is developed and validated against the results reported in the literature using gPROMS software. The model is then used for further investigation. First, a steady state calcium carbonate fouling resistance model has been developed and implemented in the full MSF mathematical model developed above using gPROMS modeling tool. This model takes into consideration the effect of stage temperature on the calcium carbonate fouling resistance in the flashing chambers in the heat recovery section, heat rejection section, and brine heaters of MSF desalination plants. The effect of seasonal variation of seawater temperature and top brine temperature on the calcium carbonate fouling resistance has been studied throughout the flashing stage. In addition, the total annual operating cost of the MSF process is selected to minimise, while optimising the operating parameters such as seawater rejected flow rate, brine recycle flow rate and steam temperature at different seawater temperature and fouling resistance. Secondly, an intermediate storage between the plant and the client is considered to provide additional flexibility in design and operation of the MSF process throughout the day. A simple polynomial based dynamic seawater temperature and different freshwater demand correlations are developed based on actual data. For different number of flash stages, operating parameters such as seawater rejected flow rate and brine recycle flow rate are optimised, while the total annual operating cost of the MSF process is selected to minimise.The results clearly show that the advantage of using the intermediate storage tank adds flexible scheduling in the MSF plant design and operation parameters to meet the variation in freshwater demand with varying seawater temperatures without interrupting or fully shutting down the plant at any time during the day by adjusting the number of stages. Furthermore, the effect of non-condensable gases (NCG) on the steady state mathematical model of MSF process is developed and implemented in the MSF model developed earlier. Then the model is used to study effect of NCG on the overall heat transfer coefficient. The simulation results showed a decrease in the overall heat transfer coefficient values as NCG concentrations increased. The model is then used to study the effect of NCG on the design and operation parameters of MSF process for fixed water demand. For a given plant configuration (fixed design) and at different seawater and steam temperatures, a 0.015 wt. % of NCG results in significantly different plant operations when compared with those obtained without the presence of NCG. Finally, for fixed water demand and in the presence of 0.015 wt. % NCGs, the performance is evaluated for different plant configurations and seawater temperature and compared with those obtained without the presence of NCG.
2

Transiente Kondensationsversuche an einem Notkondensator - Einzelrohr

Zschau, Jochen, Prasser, Horst-Michael, Gocht, Thoralf, Böttger, Arnd 31 March 2010 (has links) (PDF)
Die in diesem Bericht vorgestellten Experimente betreffen die Kondensation von Dampf in horizontalen bzw. leicht geneigten Rohren bei hohen auftretenden Temperaturdifferenzen bis zu über 200 K. Weitere Besonderheiten sind die detaillierte Untersuchung des transienten Verhaltens eines nichtkondensierbaren Gases mit einer neuartigen Messtechnik sowie die Ermittlung des Einflusses des Gases auf den Kondensationsvorgang. Beim Experiment wurden schnelle Übergangsvorgänge ausgelöst, indem ein in einer Kühlwanne liegendes, leicht geneigtes Wärmeübertragerrohr plötzlich mit dem Dampfraum eines unter Druck stehenden Kessels verbunden wurde. Dabei wurden im Rohr unterschiedliche Anfangsbedingungen hinsichtlich der Vorlage von nichtkondensierbaren Gasen (in diesem Falle Luft) eingestellt. Es wurden Versuche mit Atmosphärendruck, mit erhöhtem Druck, aber auch mit vorheriger Evakuierung des Versuchsrohrs durchgeführt. Durch eine Instrumentierung mit neuartigen Nadelsonden, die eine Phasendetektion kombiniert mit einer schnellen lokalen Temperaturmessung ermöglichen, konnte die Umverteilung von Dampf, Kondensat und nichtkondensierbarem Gas als Funktion der Zeit beobachtet werden. Damit bieten die erhaltenen Daten die Möglichkeit, insbesondere die in den Thermohydraulikprogrammen vorhandenen Optionen zur Berechnung der Ausbreitung von nichtkondensierbaren Gasen unter transienten Bedingungen zu validieren.
3

Transiente Kondensationsversuche an einem Notkondensator - Einzelrohr

Zschau, Jochen, Prasser, Horst-Michael, Gocht, Thoralf, Böttger, Arnd January 2003 (has links)
Die in diesem Bericht vorgestellten Experimente betreffen die Kondensation von Dampf in horizontalen bzw. leicht geneigten Rohren bei hohen auftretenden Temperaturdifferenzen bis zu über 200 K. Weitere Besonderheiten sind die detaillierte Untersuchung des transienten Verhaltens eines nichtkondensierbaren Gases mit einer neuartigen Messtechnik sowie die Ermittlung des Einflusses des Gases auf den Kondensationsvorgang. Beim Experiment wurden schnelle Übergangsvorgänge ausgelöst, indem ein in einer Kühlwanne liegendes, leicht geneigtes Wärmeübertragerrohr plötzlich mit dem Dampfraum eines unter Druck stehenden Kessels verbunden wurde. Dabei wurden im Rohr unterschiedliche Anfangsbedingungen hinsichtlich der Vorlage von nichtkondensierbaren Gasen (in diesem Falle Luft) eingestellt. Es wurden Versuche mit Atmosphärendruck, mit erhöhtem Druck, aber auch mit vorheriger Evakuierung des Versuchsrohrs durchgeführt. Durch eine Instrumentierung mit neuartigen Nadelsonden, die eine Phasendetektion kombiniert mit einer schnellen lokalen Temperaturmessung ermöglichen, konnte die Umverteilung von Dampf, Kondensat und nichtkondensierbarem Gas als Funktion der Zeit beobachtet werden. Damit bieten die erhaltenen Daten die Möglichkeit, insbesondere die in den Thermohydraulikprogrammen vorhandenen Optionen zur Berechnung der Ausbreitung von nichtkondensierbaren Gasen unter transienten Bedingungen zu validieren.
4

MSF process modelling, simulation and optimisation : impact of non-condensable gases and fouling factor on design and operation. Optimal design and operation of MSF desalination process with non-condensable gases and calcium carbonate fouling, flexible design operation and scheduling under variable demand and seawater temperature using gPROMS.

Said, Said Alforjani R. January 2012 (has links)
Desalination is a technique of producing fresh water from the saline water. Industrial desalination of sea water is becoming an essential part in providing sustainable source of fresh water for a large number of countries around the world. Thermal process being the oldest and most dominating for large scale production of freshwater in today¿s world. Multi-Stage Flash (MSF) distillation process has been used for many years and is now the largest sector in the desalination industry. In this work, a steady state mathematical model of Multistage Flash (MSF) desalination process is developed and validated against the results reported in the literature using gPROMS software. The model is then used for further investigation. First, a steady state calcium carbonate fouling resistance model has been developed and implemented in the full MSF mathematical model developed above using gPROMS modeling tool. This model takes into consideration the effect of stage temperature on the calcium carbonate fouling resistance in the flashing chambers in the heat recovery section, heat rejection section, and brine heaters of MSF desalination plants. The effect of seasonal variation of seawater temperature and top brine temperature on the calcium carbonate fouling resistance has been studied throughout the flashing stage. In addition, the total annual operating cost of the MSF process is selected to minimise, while optimising the operating parameters such as seawater rejected flow rate, brine recycle flow rate and steam temperature at different seawater temperature and fouling resistance. Secondly, an intermediate storage between the plant and the client is considered to provide additional flexibility in design and operation of the MSF process throughout the day. A simple polynomial based dynamic seawater temperature and different freshwater demand correlations are developed based on actual data. For different number of flash stages, operating parameters such as seawater rejected flow rate and brine recycle flow rate are optimised, while the total annual operating cost of the MSF process is selected to minimise.The results clearly show that the advantage of using the intermediate storage tank adds flexible scheduling in the MSF plant design and operation parameters to meet the variation in freshwater demand with varying seawater temperatures without interrupting or fully shutting down the plant at any time during the day by adjusting the number of stages. Furthermore, the effect of non-condensable gases (NCG) on the steady state mathematical model of MSF process is developed and implemented in the MSF model developed earlier. Then the model is used to study effect of NCG on the overall heat transfer coefficient. The simulation results showed a decrease in the overall heat transfer coefficient values as NCG concentrations increased. The model is then used to study the effect of NCG on the design and operation parameters of MSF process for fixed water demand. For a given plant configuration (fixed design) and at different seawater and steam temperatures, a 0.015 wt. % of NCG results in significantly different plant operations when compared with those obtained without the presence of NCG. Finally, for fixed water demand and in the presence of 0.015 wt. % NCGs, the performance is evaluated for different plant configurations and seawater temperature and compared with those obtained without the presence of NCG.
5

Estimativa e recuperação da água presente nos produtos de combustão de centrais termelétricas / Estimation and recovery of the water present in the flue gases of thermal power plants

Prata, José Eduardo 12 April 2018 (has links)
Usinas Termelétricas (UTEs), compostas por ciclo simples a vapor e ciclo combinado, são instalações industriais que consomem elevadas quantidades de água, sobretudo por conta de suas operações de resfriamento e de geração de vapor. Paralelamente, tem-se observado a redução de oferta deste recurso em muitas regiões onde se encontram instaladas unidades termelétricas, fato que suscita a preocupação, o debate e a pesquisa acerca do desenvolvimento de tecnologias e estratégias direcionadas à mitigação do consumo e reaproveitamento de água em UTEs. Em contrapartida, do mesmo modo que UTEs são intensivas no consumo de água, esta é também produzida na forma de vapor em escalas significativas como resultado do processo de combustão. Contudo, a parcela de água produzida é lançada para a atmosfera juntamente com os demais gases produzidos (CO2, N2, O2, SO2). Frente a esse contexto, este trabalho se divide em duas etapas distintas. A primeira voltada à estimativa da quantidade de água e demais componentes presentes nos gases de combustão de trinta e seis UTEs brasileiras, dentre as quais vinte e duas são movidas a gás natural (ciclos simples e combinados) e quatorze a carvão mineral (ciclos simples). Tais estimativas levam em conta as condições ambientais do local de operação, a eficiência típica do ciclo e a composição do combustível empregado. A segunda etapa trata da modelagem e da simulação, sob diferentes condições operacionais (pressão, temperatura de resfriamento e porcentagem de vapor de água nos gases), de um condensador duplo tubo vertical operando sob regime de convecção natural no lado do resfriamento, a partir do qual se estuda o processo de condensação do vapor de água na presença dos demais gases produzidos, estes conhecidos como gases não condensáveis (GNC). Tais simulações tem o propósito de avaliar as taxas de recuperação de água capazes de serem obtidas por meio do condensador/processo idealizado. / Single and combined steam cycle thermoelectric plants are power plants that consume high amounts of water, mainly from the cooling and steam generation operations. At the same time, there have been a reduction in the supply of this resource in many regions where thermoelectric units are installed. This fact increases the concern, discussion, and research on the development of technologies and new strategies directed to the mitigation of the consumption and reutilization of water. On the other hand, likewise UTEs are intensive in water consumption, they also produce it at significant amounts of steam from the combustion process, and that amount of water produced is released to the atmosphere together with gases produced (CO2, N2, O2, SO2). In this sense, this work is divided into two distinct parts. The first one is aimed at estimating the amount of water and other components present in the flue gases of thirty Brazilian thermal power plants, of which twenty-two are powered by natural gas (single and combined cycles) and eight moved by coal (single cycles). Such estimates consider environmental conditions of the operation site, typical cycle efficiency, and fuel composition employed. The second part deals with a numerical modeling and simulation, at different operating conditions (pressure, cooling temperature, and water vapor content in the gases), of a double vertical tube condenser operating by natural convection on the cooling side, from which the condensation process of the water vapor is studied in the presence of the other gases produced (known as non-condensable gases, NCG). These simulations have the fundamental purpose of evaluating the rates of condensate that can be recovered by means of the condenser/idealized process.
6

Estimativa e recuperação da água presente nos produtos de combustão de centrais termelétricas / Estimation and recovery of the water present in the flue gases of thermal power plants

José Eduardo Prata 12 April 2018 (has links)
Usinas Termelétricas (UTEs), compostas por ciclo simples a vapor e ciclo combinado, são instalações industriais que consomem elevadas quantidades de água, sobretudo por conta de suas operações de resfriamento e de geração de vapor. Paralelamente, tem-se observado a redução de oferta deste recurso em muitas regiões onde se encontram instaladas unidades termelétricas, fato que suscita a preocupação, o debate e a pesquisa acerca do desenvolvimento de tecnologias e estratégias direcionadas à mitigação do consumo e reaproveitamento de água em UTEs. Em contrapartida, do mesmo modo que UTEs são intensivas no consumo de água, esta é também produzida na forma de vapor em escalas significativas como resultado do processo de combustão. Contudo, a parcela de água produzida é lançada para a atmosfera juntamente com os demais gases produzidos (CO2, N2, O2, SO2). Frente a esse contexto, este trabalho se divide em duas etapas distintas. A primeira voltada à estimativa da quantidade de água e demais componentes presentes nos gases de combustão de trinta e seis UTEs brasileiras, dentre as quais vinte e duas são movidas a gás natural (ciclos simples e combinados) e quatorze a carvão mineral (ciclos simples). Tais estimativas levam em conta as condições ambientais do local de operação, a eficiência típica do ciclo e a composição do combustível empregado. A segunda etapa trata da modelagem e da simulação, sob diferentes condições operacionais (pressão, temperatura de resfriamento e porcentagem de vapor de água nos gases), de um condensador duplo tubo vertical operando sob regime de convecção natural no lado do resfriamento, a partir do qual se estuda o processo de condensação do vapor de água na presença dos demais gases produzidos, estes conhecidos como gases não condensáveis (GNC). Tais simulações tem o propósito de avaliar as taxas de recuperação de água capazes de serem obtidas por meio do condensador/processo idealizado. / Single and combined steam cycle thermoelectric plants are power plants that consume high amounts of water, mainly from the cooling and steam generation operations. At the same time, there have been a reduction in the supply of this resource in many regions where thermoelectric units are installed. This fact increases the concern, discussion, and research on the development of technologies and new strategies directed to the mitigation of the consumption and reutilization of water. On the other hand, likewise UTEs are intensive in water consumption, they also produce it at significant amounts of steam from the combustion process, and that amount of water produced is released to the atmosphere together with gases produced (CO2, N2, O2, SO2). In this sense, this work is divided into two distinct parts. The first one is aimed at estimating the amount of water and other components present in the flue gases of thirty Brazilian thermal power plants, of which twenty-two are powered by natural gas (single and combined cycles) and eight moved by coal (single cycles). Such estimates consider environmental conditions of the operation site, typical cycle efficiency, and fuel composition employed. The second part deals with a numerical modeling and simulation, at different operating conditions (pressure, cooling temperature, and water vapor content in the gases), of a double vertical tube condenser operating by natural convection on the cooling side, from which the condensation process of the water vapor is studied in the presence of the other gases produced (known as non-condensable gases, NCG). These simulations have the fundamental purpose of evaluating the rates of condensate that can be recovered by means of the condenser/idealized process.
7

Fractional Catalytic Pyrolysis Technology for the Production of Upgraded Bio-oil using FCC Catalyst

Mante, Nii Ofei Daku 06 January 2012 (has links)
Catalytic pyrolysis technology is one of the thermochemical platforms used to produce high quality bio-oil and chemicals from biomass feedstocks. In the catalytic pyrolysis process, the biomass is rapidly heated under inert atmosphere in the presence of an acid catalyst or zeolite to promote deoxygenation and cracking of the primary vapors into hydrocarbons and small oxygenates. This dissertation examines the utilization of conventional fluid catalytic cracking (FCC) catalyst in the fractional catalytic pyrolysis of hybrid poplar wood. The influence of Y-zeolite content, steam treatment, addition of ZSM-5 additive, process conditions (temperature, weight hourly space velocity (WHSV) and vapor residence time) and recycling of the non-condensable gases (NCG) on the product distribution and the quality of the bio-oil were investigated. The first part of the study demonstrates the influence of catalytic property of FCC catalyst on the product distribution and quality of the bio-oil. It was found that FCC catalyst with higher Y-zeolite content produces higher coke yield and lower organic liquid fraction (OLF). Conversely, FCC catalyst with lower Y-zeolite content results in lower coke yield and higher OLF. The results showed that higher Y-zeolite content extensively cracks dehydrated products from cellulose decomposition and demethoxylates phenolic compounds from lignin degradation. The Y-zeolite promoted both deoxygenation and coke forming reactions due to its high catalytic activity and large pore size. Higher Y-zeolite content increased the quality of the bio-oil with respect to higher heating value (HHV), pH, density, and viscosity. The steam treatment at 732 oC and 788 oC decreased the total BET surface area of the FCC catalyst. The findings suggest that steam treatment reduces the coking tendency of the FCC catalyst and enhances the yield of the OLF. Analysis of the bio-oils showed that the steamed FCC catalyst produces bio-oil with lower viscosity and density. Gas chromatography and 13C-NMR spectrometry suggest that steam treatment affect the catalyst selectivity in the formation of CO, CO2, H2, CH4, C2-C5 hydrocarbons and aromatic hydrocarbons. The addition of ZSM-5 additive to the FCC catalyst was found to alter the characteristic/functionality of the catalytic medium. The product slate showed decrease in coke yield and increase in OLF with increase in ZSM-5 additive. The FCC/ZSM-5 additive hybrid catalysts produced bio-oils with relatively lower viscosity and higher pH value. The formation of CO2, CH4, and H2 decreased whilst C5 and aromatic hydrocarbons increased with increase in ZSM-5 additive level. The second part of the work assesses the effect of operating conditions on the catalytic pyrolysis process. The response surface methodology study showed reaction temperature to be the most influential statistically significant independent variable on char/coke yield, concentration of non-condensable gases, carbon content, oxygen content, pH and viscosity of the bio-oils. The WHSV was the most important statistically significant independent variable that affects the yield of organic liquid and water. Adequate and statistically significant models were generated for the prediction of the responses with the exception of viscosity. Recycling of the NCG in the process was found to potentially increase the liquid yield and decrease char/coke yield. The experiments with the model fluidizing gases showed that CO/N2, CO2/N2, CO/CO2/N2 and H2/N2 increase the liquid yield and CO2/N2 decrease char/coke yield. The results showed that recycling of NCG increases the higher heating value and the pH of the bio-oil as well as decreases the viscosity and density. The concept of recycling the NCG in the catalytic cracking of biomass vapors with FCC catalyst improved the overall process. The evaluation of the reactivity of conventional FCC catalyst towards bio-based molecules provide essential direction for FCC catalyst formulation and design for the production of high quality bio-oils from catalytic pyrolysis of biomass. / Ph. D.

Page generated in 0.0567 seconds