• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 57
  • 30
  • 29
  • 16
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 482
  • 148
  • 132
  • 73
  • 72
  • 64
  • 47
  • 46
  • 34
  • 33
  • 33
  • 32
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Conformal invariant operator product expansions

Tratnik, Mike. January 1983 (has links)
No description available.
142

Geometric Properties of the Ferrand Metric

Julian, Poranee K. January 2012 (has links)
No description available.
143

Using the D1D5 CFT to Understand Fuzzballs

Guo, Bin January 2021 (has links)
No description available.
144

A wide-angle pattern diversity antenna system for mmWave 5G mobile terminals

Sadananda, K.G., Elfergani, Issa T., Zebiri, C., Rodriguez, Jonathan, Koul, S.K., Abd-Alhameed, Raed 16 February 2022 (has links)
Yes / A shared ground shared radiator with wide angular coverage for mmWave 5G smartphones is proposed in this paper. A four-element corporate-fed array with conventional impedance matched power divider is designed. Stepped impedance transformers are integrated with the corner most elements to achieve pattern diversity with wide angular coverage without signifi-cant compromise in gain. The proposed three-port shared radiator conformal commercial an-tenna could be easily integrated with commercial mmWave 5G smartphones. All the three ports’ excitations operate in the 28 GHz band. Radiation pattern bandwidth of the multi-port system is high. The gain variation is from 6 to11 dBi amongst the ports and across the operating spectrum. The highest mutual coupling is 10 dB, in spite of the electrically connected structure. The pro-posed shared radiator element has a wide angular coverage of 100°, maintaining high front-to-back ratio when the respective port is excited. Simulation and measurement results for the proposed structure are illustrated in detail. / This work is supported by the Moore4Medical project, funded within ECSEL JU in collaboration with the EU H2020 Framework Programme (H2020/2014-2020) under grant agreement H2020-ECSEL-2019-IA-876190, and Fundação para a Ciência e Tecnologia (ECSEL/0006/2019).
145

Constructing Higher Order Conformal Symplectic Exponential Time Differencing Methods

Amirzadeh, Lily S 01 January 2023 (has links) (PDF)
Methods featured are primarily conformal symplectic exponential time differencing methods, with a focus on families of methods, the construction of methods, and the features and advantages of methods, such as order, stability, and symmetry. Methods are applied to the problem of the damped harmonic oscillator. Construction of both exponential time differencing and integrating factor methods are discussed and contrasted. It is shown how to determine if a system of equations or a method is conformal symplectic with flow maps, how to determine if a method is symmetric by taking adjoints, and how to find the stability region of a method. Exponential time differencing Stormer-Verlet is derived and is shown as the example for how to find the order of a method using Taylor series. Runge-Kutta methods, partitioned exponential Runge-Kutta methods, and their associated tables are introduced, with versions of Euler's method serving as examples. Lobatto IIIA and IIIB methods also play a key role, as a new exponential trapezoid rule is derived. A new fourth order exponential time differencing method is derived using composition techniques. It is shown how to implement this method numerically, and thus it is analyzed for properties such as error, order of accuracy, and structure preservation.
146

Conformal Densities and Deformations of Uniform Loewner Metric Spaces

RUTH, HARRY LEONARD, JR. 25 August 2008 (has links)
No description available.
147

A Study of Black Hole Formation and Evaporation via the D1D5 CFT Dual

Carson, Zachary Lee 28 December 2016 (has links)
No description available.
148

Bioinspired Multiscale Biomaterials for Cell-Based Medicine

Zhao, Shuting, zhao 28 December 2016 (has links)
No description available.
149

Printing on Objects: Curved Layer Fused Filament Fabrication on Scanned Surfaces with a Parallel Deposition Machine

Coe, Edward Olin 21 June 2019 (has links)
Consumer additive manufacturing (3D printing) has rapidly grown over the last decade. While the technology for the most common type, Fused Filament Fabrication (FFF), has systematically improved and sales have increased, fundamentally, the capabilities of the machines have remained the same. FFF printers are still limited to depositing layers onto a flat build plate. This makes it difficult to combine consumer AM with other objects. While consumer AM promises to allow us to customize our world, the reality has fallen short. The ability to directly modify existing objects presents numerous possibilities to the consumer: personalization, adding functionality, improving functionality, repair, and novel multi-material manufacturing processes. Indeed, similar goals for industrial manufacturing drove the research and development of technologies like direct write and directed energy deposition which can deposit layers onto uneven surfaces. Replicating these capabilities on consumer 3-axis FFF machines is difficult mainly due to issues with reliability, repeatability, and quality. This thesis proposes, demonstrates, and tests a method for scanning and printing dimensionally-accurate (unwarped) digital forms onto physical objects using a modified consumer-grade 3D printer. It then provides an analysis of the machine design considerations and critical process parameters. / Master of Science / Consumer additive manufacturing (3D printing) has rapidly grown over the last decade. While the technology for the most common type, Fused Filament Fabrication (FFF), has systematically improved and sales have increased, fundamentally, the capabilities of the machines have remained the same. FFF printers are still limited to depositing layers onto a flat build plate. This makes it difficult to combine consumer AM with other objects. While consumer AM promises to allow us to customize our world, the reality has fallen short. The ability to directly modify existing objects presents numerous possibilities to the consumer: personalization, adding functionality, improving functionality, repair, and novel multi-material manufacturing processes. Indeed, similar goals for industrial manufacturing drove the research and development of technologies like direct write and directed energy deposition which can deposit layers onto uneven surfaces. Replicating these capabilities on consumer 3-axis FFF machines is difficult mainly due to issues with reliability, repeatability, and quality. This thesis proposes, demonstrates, and tests a method for scanning and printing dimensionally-accurate (unwarped) digital forms onto physical objects using a modified consumer-grade 3D printer. It then provides an analysis of the machine design considerations and critical process parameters.
150

Investigation of a Phased Array of Circular Microstrip Patch Elements Conformal to a Paraboloidal Surface

Kumar, Sharath 04 December 2006 (has links)
This thesis investigates the performance of a phased array of antenna elements conforming to a paraboloidal surface. We hypothesize that such a conformal phased array would have performance comparable to that of a correspondingly sized planar array. The performance of a paraboloidal array of antenna elements was simulated using an array program, and the resulting gains, side-lobe levels, and half-power beamwidths compared to those of a similarly sized planar array. Furthermore, we propose a beam-forming feed network for this paraboloidal phased array, and discuss the influence that coupling between the elements could have on the array performance. Lastly, we propose that such an array be used in conjunction with a parabolic reflector antenna to form a versatile hybrid antenna with several potential applications. / Master of Science

Page generated in 0.0431 seconds