• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and applications of affinity based surface modification of polypyrrole

Nickels, Jonathan D. 06 November 2012 (has links)
I present the characterization and applications of a technique to modify the surface of the conducting polymer, polypyrrole, via a novel, 12-amino acid peptide, THRTSTLDYFVI (T59). This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole, allowing it to be used in tethering molecules to polypyrrole for uses such as a scaffold for the treatment of peripheral nerve injury or in surface coatings of neural recording electrodes. I have quantified the binding of this peptide as well as investigating the mechanism of the binding. The equilibrium constant of the binding interaction of PPyCl and the T59 peptide was found through a binding assay to be 92.6 nM, and the off rate was found to be approximately 2.49 s⁻¹, via AFM force spectroscopy. The maximum observed surface density of the peptide was 1.27 +/- 0.42 femtomoles/cm². Furthermore, my studies suggest that the eighth residue, aspartic acid, is the main contributor of the binding, by interacting with the partially positive charge on the backbone of polypyrrole. I have demonstrated practical applications of the technique in the successful modification of a PPyCl surface with the laminin fragment IKVAV, as well as the so-called stealth molecule poly(ethylene glycol) (PEG). A subcutaneous implant study was performed to confirm that the T59 peptide did not induce any significant reaction in vivo. Significantly, the conductivity of a PPyCl surface was unaffected by this surface modification technique. / text
2

Approaches to the detection of adducts formed via the covalent binding of reactive metabolites to proteins

Squillaci, Bianca January 2013 (has links)
Metabolism of xenobiotic drug molecules can result in the formation of metabolites which are more chemically reactive than the parent drug from which they are derived. These reactive species have the potential to covalently modify biological macromolecules if they are not detoxified. The formation of drug-protein adducts carries a potential risk of clinical toxicities and idiosyncratic adverse drug reactions which can, in severe cases, result in hospitalisation and even death. Current methods for the evaluation of the risk for a drug to cause adverse drug reactions due to drug-protein binding rely on risk factors such as quantitative covalent binding value, structure, dose etc. The objective of this project was to develop methods for the detection of reactive metabolites directly bound to proteins, which could be used in future evaluations of the mechanisms of binding of candidates in drug development. Three compounds known to produce reactive metabolites, acetaminophen, SB-648969 and amodiaquine, were used as tool substrates. In vitro incubations with human liver microsomes and individual cytochrome P450 enzymes (as Supersomes ) were used to produce reactive metabolite species and binding with the incubation proteins evaluated. Analysis of the intact proteins, peptides generated via trypsin digestion of the incubation protein, and amino acids generated via digestion with pronase were evaluated using a combination of LC/MS and LC-MS/MS. Reactive metabolite trapping experiments with glutathione were used to provide information about the likely structure of the bound species and the specificity of binding, and were useful in the development of sensitive targeted precursor ion scanning and multiple reaction monitoring methods. [14C] radiolabelled acetaminophen and SB-649868 were used to assess the quantitative levels of binding (<5% modification of protein in both cases). Radiodetection using accelerator mass spectrometry (AMS) was used to evaluate the stoichiometry of binding and aid the identification of adducted peptides through retention time comparison. Chemical and electrochemical methods were utilised to produce stable solutions of N-acetyl-p-benzoquinone imine (NAPQI) and amodiaquine quinone imine (AQQI), reactive metabolites of acetaminophen and amodiaquine, respectively, which were bound to selected proteins and used as chromatographic and mass spectrometric standards. These methods were used to successfully identify an acetaminophen-modified peptide (T56) of cytochrome P450 CYP2E1. No modified proteins were observed for the SB-649868 incubations, however, examination of the AMS chromatograms for the incubations with acetaminophen and SB-649868 revealed a difference in the stoichiometry of binding, with one modified peptide observed with acetaminophen, and several for the incubations with SB-649868. The detection and identification of drug-protein adducts remains extremely challenging due to the low levels of any adducts observed, which can be exacerbated by binding on multiple sites of a protein; however this project has demonstrated that sensitive and selective LC/MS methods can be successfully developed to identify drug-protein adducts.
3

Synthèse et caractérisations physico-chimiques et biologiques de revêtements implantaires bioactifs / Synthesis and physicochemical and biological characterization of bioactive implant coatings

D'Almeida, Mélanie 15 December 2014 (has links)
L'accès aux soins dentaires est devenu, au cours de ces dernières années, un service de plus en plus demandé par la population. En particulier, la pose d'un implant, destiné à remplacer une dent manquante, en recréant une racine artificielle, devient un acte de plus en plus courant. Une des principales sources de complications entrainant l'échec de la pose d'un implant est une maladie inflammatoire : la péri-implantite. Cette maladie induit la perte des os de soutien dans les tissus entourant l'implant fonctionnel. Actuellement, il n'existe pas d'implant prévenant ces infections bactériennes, seuls des traitements curatifs sont proposés. Le développement d'un traitement antibactérien implantaire apparaît alors comme une solution préventive pertinente pour limiter les complications post-opératoires et représente un défi de santé publique. Pour parvenir à cet objectif, dans ce travail de thèse, plusieurs solutions pour préparer un revêtement implantaire bioactif ont été étudiées et évaluées. Elles sont toutes basées sur le recouvrement d'une surface modèle de titane par un polymère naturel bioactif, le chitosane. Le greffage du biopolymère au substrat a été réalisé via une liaison covalente en utilisant un agent de couplage. Les différentes étapes de la synthèse du revêtement ainsi que ses propriétés biologiques ont été caractérisées à l'aide de techniques d'analyses de chimie de surface, par des études de tenue et de restitution du biopolymère en milieu acide ainsi que par des études in vitro de l'activité antibactérienne et des propriétés biologiques des revêtements. Les résultats de ce travail ont permis de sélectionner le revêtement bioactif possédant les meilleurs propriétés pour l'application visée, notamment en raison de sa tenue en milieu acide et de son activité antibactérienne en présence des bactéries communes / In the past years, population requirement for dental care service increased. More precisely, replacement of missing tooth using dental implant is now a common intervention. As implant provides an artificial root, this procedure is permanent. The failure of the placement procedure is mainly due to an inflammatory disease: peri-implantitis. This disease leads to the death of bone tissues surrounding the dental implant. Today only curative solutions are available, and no implants can prevent bacterial development. It appears that preventing post-surgical complications by designing antibacterial implants is now a public health issue. To achieve this goal, we evaluate in this thesis different solutions to design bioactive implant coatings. We focused our work on coating of a model titanium surface by a bioactive polymer: chitosan. Polymer binding on the substrate is achieved by covalent link using a coupling agent. We described each step of the coating synthesis and characterized its biological properties using both surface chemistry analysis and cell biology techniques. We studied its behavior in an acid environment and analyzed its biological and antibacterial properties in vitro. Results of this work were used to select the bioactive coating with the best properties for the intended application, particularly due to its resistance in acidic condition and its antibacterial activity against common bacteria

Page generated in 0.101 seconds