• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms and treatment strategies to overcome resistance to non-cytotoxic therapy in cancer

Kuljaca, Selena, Women's & Children's Health, Faculty of Medicine, UNSW January 2010 (has links)
As anti-cancer agents, retinoid induce cell growth arrest and differentiation, while HDACIs cause cell differentiation, growth inhibition, death and inhibit angiogenesis in many cancer types. However, a proportion of patients respond poorly to these therapies. My studies, presented here, aimed to improve the anti-cancer effects of these agents by identifying key factors which mediate cancer cell sensitivity or resistance to their action. In this study I have found that the clinically used retinoid, 13-cis RA, exerts its anti-cancer signal in a manner similar to atRA, by modulating the transcriptional response of retinoid-regulated genes. HDACI-induced cytotoxicity is significantly enhanced when combined with IFNα in 8 out of 9 cancer cell lines from various organ origins. Sensitivity to the combination treatment correlated with an absence of basal p21 protein expression, and cell cycle arrest. Knocking-down p21 gene expression further sensitized cancer cells to the combination therapy. Moreover, IFNα and HDACI co-operatively inhibited pro-angiogenic gene expression in cancer cells, and the combination therapy decreased endothelial cell migration, invasion, and capillary tubule formation. Further experiments on p21 as a resistance factor to anti-cancer treatment demonstrated that conditioned media from breast cancer MCF-7 cells transfected with p21 siRNA, induced significantly less endothelial cell migration, invasion and vascular sprouting, compared with media from cells transfected with scrambled siRNA. LC/MS analysis of the conditioned media revealed that Trx secretion was significantly reduced after p21 knockdown. The reduction in Trx secretion following p21 knockdown was due to a direct effect of p21 siRNA on the expression of intracellular TBP2 in neuroblastoma, prostate and lung cancer cells. Consistent with this result, media from MCF7 cells transfected with TBP2-specific siRNA alone, promoted endothelial cell invasion and vascular sprouting, Trx knockdown resulted in opposite effects, and the anti-angiogenic effect of p21 siRNA was offset by simultaneous TBP2 siRNA transfection. ChIP assay revealed that p21 directly bound to an E2F1-bindng site in the TBP2 gene promoter. These data indicate that p21 promoted tumour-driven angiogenesis through transcriptional repression of TBP2. Collectively, my experiments indicate several potential treatment targets directed toward enhancing the effectiveness of HDACIs and retinoids.
2

Mechanisms and treatment strategies to overcome resistance to non-cytotoxic therapy in cancer

Kuljaca, Selena, Women's & Children's Health, Faculty of Medicine, UNSW January 2010 (has links)
As anti-cancer agents, retinoid induce cell growth arrest and differentiation, while HDACIs cause cell differentiation, growth inhibition, death and inhibit angiogenesis in many cancer types. However, a proportion of patients respond poorly to these therapies. My studies, presented here, aimed to improve the anti-cancer effects of these agents by identifying key factors which mediate cancer cell sensitivity or resistance to their action. In this study I have found that the clinically used retinoid, 13-cis RA, exerts its anti-cancer signal in a manner similar to atRA, by modulating the transcriptional response of retinoid-regulated genes. HDACI-induced cytotoxicity is significantly enhanced when combined with IFNα in 8 out of 9 cancer cell lines from various organ origins. Sensitivity to the combination treatment correlated with an absence of basal p21 protein expression, and cell cycle arrest. Knocking-down p21 gene expression further sensitized cancer cells to the combination therapy. Moreover, IFNα and HDACI co-operatively inhibited pro-angiogenic gene expression in cancer cells, and the combination therapy decreased endothelial cell migration, invasion, and capillary tubule formation. Further experiments on p21 as a resistance factor to anti-cancer treatment demonstrated that conditioned media from breast cancer MCF-7 cells transfected with p21 siRNA, induced significantly less endothelial cell migration, invasion and vascular sprouting, compared with media from cells transfected with scrambled siRNA. LC/MS analysis of the conditioned media revealed that Trx secretion was significantly reduced after p21 knockdown. The reduction in Trx secretion following p21 knockdown was due to a direct effect of p21 siRNA on the expression of intracellular TBP2 in neuroblastoma, prostate and lung cancer cells. Consistent with this result, media from MCF7 cells transfected with TBP2-specific siRNA alone, promoted endothelial cell invasion and vascular sprouting, Trx knockdown resulted in opposite effects, and the anti-angiogenic effect of p21 siRNA was offset by simultaneous TBP2 siRNA transfection. ChIP assay revealed that p21 directly bound to an E2F1-bindng site in the TBP2 gene promoter. These data indicate that p21 promoted tumour-driven angiogenesis through transcriptional repression of TBP2. Collectively, my experiments indicate several potential treatment targets directed toward enhancing the effectiveness of HDACIs and retinoids.

Page generated in 0.0745 seconds