Spelling suggestions: "subject:"nondissipative"" "subject:"nondissipatives""
141 |
Sur une classe de systèmes dissipatifs hors d'équilibreCoppex, François 17 March 2005 (has links) (PDF)
Nous considérons des systèmes dissipatifs, hors d'équilibre, de faible densité, et constitués d'un grand nombre de particules classiques en interaction. Dans une première partie, nous étudions l'annihilation balistique probabiliste, où les particules ont une trajectoire balistique sauf lorsqu'elles entrent en contact, s'annihilant alors avec probabilité p et subissant une collision élastique avec probabilité (1-p). Nous établissons pour ce système sans loi de conservation une description hydrodynamique résultant de la théorie cinétique. L'analyse de stabilité linéaire de l'état homogène montre alors que l'amplification des fluctuations par la dynamique est un phénomène transitoire. Dans la seconde partie, nous présentons un modèle mésoscopique décrivant le phénomène de brisure spontanée de symétrie observé dans certaines expériences sur la matière granulaire vibrée.
|
142 |
Stochastic Approach To Fusion DynamicsYilmaz, Bulent 01 June 2007 (has links) (PDF)
This doctoral study consists of two parts. In the first part, the quantum statistical effects on the formation process of the heavy ion fusion reactions have been investigated by using the c-number quantum Langevin equation approach. It has been shown that the quantum effects enhance the over-passing probability at low temperatures. In the second part, we have developed a simulation technique for the quantum noises which can be approximated by two-term exponential colored noise.
|
143 |
Optimal Control Of Numerical Dissipation In Modified KFVS (m-KFVS) Using Discrete Adjoint MethodAnil, N 05 1900 (has links)
The kinetic schemes, also known as Boltzmann schemes are based on the moment-method-strategy, where an upwind scheme is first developed at the Boltzmann level and after taking suitable moments we arrive at an upwind scheme for the governing Euler or Navier-Stokes equations. The Kinetic Flux Vector Splitting (KFVS)scheme, which belongs to the family of kinetic schemes is being extensively used to compute inviscid as well as viscous flows around many complex configurations of practical interest over the past two decades. To resolve many flow features accurately, like suction peak, minimising the loss in stagnation pressure, shocks, slipstreams, triple points, vortex sheets, shock-shock interaction, mixing layers, flow separation in viscous flows require an accurate and low dissipative numerical scheme. The first order KFVS method even though is very robust suffers from the problem of having much more numerical diffusion than required, resulting in very badly smearing of the above features. However, numerical dissipation can be reduced considerably by using higher order kinetic schemes. But they require more points in the stencil and hence consume more computational time and memory. The second order schemes require flux or slope limiters in the neighbourhood of discontinuities to avoid spurious and physically meaningless wiggles or oscillations in pressure, temperature or density. The limiters generally restrict the residue fall in second order schemes while in first order schemes residue falls up to machine zero. Further, pressure and density contours or streamlines are much smoother for first order accurate schemes than second order accurate schemes. A question naturally arises about the possibility of constructing first order upwind schemes which retain almost all advantages mentioned above while at the same time crisply capture the flow features.
In the present work, an attempt has been made to address the above issues by developing yet another kinetic scheme, known as the low dissipative modified KFVS (m-KFVS) method based on modified CIR (MCIR) splitting with molecular velocity dependent dissipation control function. Different choices for the dissipation control function are presented. A detailed mathematical analysis and the underlying physical arguments behind these choices are presented. The expressions for the m-KFVS fluxes are derived. For one of the choices, the expressions for the split fluxes are similar to the usual first order KFVS method. The mathematical properties of 1D m-KFVS fluxes and the eigenvalues of the corresponding flux Jacobians are studied numerically. The analysis of numerical dissipation is carried out both at Boltzmann and Euler levels. The expression for stability criterion is derived. In order to be consistent with the interior scheme, modified solid wall and outer boundary conditions are derived by extending the MCIR idea to boundaries.
The cell-centred finite volume method based on m-KFVS is applied to several standard test cases for 1D, 2D and 3D inviscid flows. In the case of subsonic flows, the m-KFVS method produces much less numerical entropy compared to first order KFVS method and the results are comparable to second order accurate q-KFVS method. In transonic and supersonic flows, m-KFVS generates much less numerical dissipation compared to first order KFVS and even less compared to q-KFVS method. Further, the m-KFVS method captures the discontinuities more sharply with contours being smooth and near second order accuracy has been achieved in smooth regions, by still using first order stencil. Therefore, the numerical dissipation generated by m-KFVS is considerably reduced by suitably choosing the dissipation control variables. The Euler code based on m-KFVS method almost takes the same amount of computational time as that of KFVS method.
Although, the formal accuracy is of order one, the m-KFVS method resolves the flow features much more accurately compared to first order KFVS method but the numerical dissipation generated by m-KFVS method may not be minimal. Hence, the dissipation control vector is in general not optimal. If we can find the optimal dissipation control vector then we will be able to achieve the minimal dissipation. In the present work, the above objective is attained by posing the minimisation of numerical dissipation in m-KFVS method as an optimal control problem. Here, the control variables are the dissipation control vector. The discrete form of the cost function, which is to be minimised is considered as the sum of the squares of change in entropy at all cells in the computational domain. The number of control variables is equal to the total number of cells or finite volumes in the computational domain, as each cell has only one dissipation control variable.
In the present work, the minimum value of cost function is obtained by using gradient based optimisation method. The sensitivity gradients of the cost function with respect to the control variables are obtained using discrete adjoint approach. The discrete adjoint equations for the optimisation problem of minimising the numerical dissipation in m-KFVS method applied to 2D and 3D Euler equations are derived. The method of steepest descent is used to update the control variables. The automatic differentiation tool Tapenade has been used to ease the development of adjoint codes.
The m-KFVS code combined with discrete adjoint code is applied to several standard test cases for inviscid flows. The test cases considered are, low Mach number flows past NACA 0012 airfoil and two element Williams airfoil, transonic and supersonic flows past NACA 0012 airfoil and finally, transonic flow past Onera M6 wing. Numerical results have shown that the m-KFVS-adjoint method produces even less numerical dissipation compared to m-KFVS method and hence results in more accurate solution. The m-KFVS-adjoint code takes more computational time compared to m-KFVS code.
The present work demonstrates that it is possible to achieve near second order accuracy by formally first order accurate m-KFVS scheme while retaining advantages of first order accurate methods.
|
144 |
Dynamique et contrôle de systèmes quantiques ouvertsChenel, Aurélie 16 July 2014 (has links) (PDF)
L'étude des effets quantiques, comme les cohérences quantiques, et leur exploitation en contrôle par impulsion laser constituent encore un défi numérique pour les systèmes de grande taille. Pour réduire la dimensionnalité du problème, la dynamique dissipative se focalise sur un sous-espace quantique dénommé 'système', qui inclut les degrés de liberté les plus importants. Le système est couplé à un bain thermique d'oscillateurs harmoniques. L'outil essentiel de la dynamique dissipative est la densité spectrale du bain, qui contient toutes les informations sur le bain et sur l'interaction entre le système et le bain. Plusieurs stratégies complémentaires existent. Nous adoptons une équation maîtresse quantique non-markovienne pour décrire l'évolution de la matrice densité associée au système. Cette approche, développée par C. Meier et D.J. Tannor, est perturbative en fonction du couplage entre le système et le bain, mais pas en fonction de l'interaction avec un champ laser. Le but est de confronter cette méthodologie à des systèmes réalistes calibrés par des calculs de structure électronique ab initio. Une première étude porte sur la modélisation du transfert d'électron ultrarapide à une hétérojonction oligothiophène-fullerène, présente dans des cellules photovoltaïques organiques. La description du problème en fonction d'une coordonnée brownienne permet de contourner la limitation du régime perturbatif. Le transfert de charge est plus rapide mais moins complet lorsque la distance R entre les fragments oligothiophène et fullerène augmente. La méthode de dynamique quantique décrite ci-dessus est ensuite combinée à la Théorie du Contrôle Optimal (OCT), et appliquée au contrôle d'une isomérisation, le réarrangement de Cope, dans le contexte des réactions de Diels-Alder. La prise en compte de la dissipation dès l'étape d'optimisation du champ permet à l'algorithme de contrôle de contrer la décohérence induite par l'environnement et conduit à un meilleur rendement. La comparaison de modèles à une et deux dimensions montre que le contrôle trouve un mécanisme adapté au modèle utilisé. En deux dimensions, il agit activement sur les deux coordonnées du modèle. En une dimension, le décohérence est minimisée par une accélération du passage par les états délocalisés situés au-dessus de la barrière de potentiel.
|
145 |
Application de la méthode des coordonnées collectives à l'analyse de la dynamique des lasers à fibre à modes bloqués / Application of the collective coordinate method to the analysis of the dynamics of mode-locked fiber lasersAlsaleh, Magda 29 October 2015 (has links)
Les lasers à fibres à modes bloqués font partie des rares systèmes qui permettent de réaliser une variété de fonctions optiques élaborées, au moyen de peu de composants optiques. La gestion de la dispersion apporte à ce type de lasers une variété de comportements, qui est si riche que la cartographie complète et l’analyse détaillée des états stables deviennent difficilement réalisable lorsqu’on utilise les outils conventionnels basés sur les équations de propagation du champ intra-cavité. Dans cette thèse nous montrons que l’adjonction de la technique des coordonnées collectives aux outils théoriques conventionnels, permet de résoudre au moins en partie le problème de la complexité et l’extrême diversité des états stables des cavités gérées en dispersion. En particulier, nous proposons l’ACCD (approche des coordonnées collectives dynamiques), comme un outil théorique permettant de réaliser des gains de performance substantiels dans des opérations de recherche et caractérisation des états stables du laser. D’autre part, le recours à l’approche des cordonnées collectives nous permet de mettre en évidence des effets majeurs induits par certains phénomènes qui étaient jusqu’à présent largement sous-estimés. Notamment, nous mettons en évidence des modifications majeures desdomaines respectifs des différents états stables du laser, qui surviennent lorsqu’on change la bande passant de la fitre. D’autre part, en considérant une cavité où la largeur spectrale du champ lumineux (3.12 THz) est d’un ordre de grandeur plus petite que la largeur de la bande du gain Raman, nous mettons en lumière des effets remarquables de la diffusion Raman sur les phénomènes d’hystérésis. / Mode-locked fiber laser are among the few systems that allow to achieve a variety of elaborate optical functions, by means of few optical components. The use of dispersion management brings to this type of lasers a variety of behaviors, which is so rich that the complete mapping and detailed analysis of the stable states becomes impractical when conventional tools based on the intra-cavity field propagation equations, are used. In this thesis we show that the addition of the technique ofcollective coordinates to the conventional theoretical tools, allows to solve at least in part the problem of complexity and diversity of the stable states of the cavity. In particular, we propose the DCCA (dynamical collective coordinate approach), as a theoretical tool to achieve substantial performance gains in search and characterization of stable states of the laser. Furthermore, the use of the collective coordinated approach allows us to highlight major effects induced by certain phenomena that were until now largely underestimated. In particular, we highlight major changes in the respective areas ofthe different stable states of the laser, which occur when changing the width of the band-pass filter BPF. Furthermore, considering a cavity where the spectral width of the light field (3.12 THz) is an order of magnitude smaller than the bandwidth of the Raman gain, we highlight remarkable effects of Raman scattering on hysteresis phenomena.
|
146 |
Algorithme d'évolution pour laser à fibre optique en régime d'impulsions courtes / Evolutionary algorithm for fiber laser in ultrashort pulse regimeAndral, Ugo 02 December 2016 (has links)
Le sujet de cette thèse se rapporte à la génération d’impulsions ultracourtes dans une cavité laser fibrée à travers l’optimisation automatique de ses paramètres par un algorithme d’évolution. L’intérêt pour cette problématique provient de la difficulté à explorer les dynamiques impulsionnelles de manière systématique dans un large domaine de paramètres expérimentaux. Nous avons montré que l’implémentation d’un algorithme d’évolution sur une cavité laser fibrée de ce type peut être réalisée, en prenant les précautions adéquates pour que cette association soit la plus efficace possible. Nous avons démontré expérimentalement pour la première fois le verrouillage de modes depuis la seule optimisation des contrôleurs de polarisation utilisant une procédure automatique d’auto-apprentissage. Nous avons démontré que la sélection du blocage de modes depuis son spectre radio-fréquence permet de sélectionner le taux de répétition desimpulsions à l’intérieur de la cavité. Ces résultats préliminaires démontrent les potentialités de notre méthode employée dans des situations de dynamique non linéaire ultrarapide de grande complexité, particulièrement sensibles aux paramètres. / This thesis deals with the generation of ultrashort pulses within a fiber laser cavity through the automatic optimization of its parameters by an evolutionary algorithm. The interest of this subject comes from the difficulty to systematically explore dynamics in a large domain of experimental parameters. We have shown that it is possible to implement an evolutionary algorithm on fiber laser cavity with appropriate precautions. We have experimentally demonstrated for the first time the mode locking of a laser cavity only using the optimization of polarization controllers through an automatic and self-learning procedure. We also have demonstrated that selecting the mode locking from it radio-frequency spectrum allow to select the pulses repetition rate within the cavity. These preliminary results show the promising aspect of our method used in situations of non linear ultrafast dynamics with high complexity which are particularly sensitive to parameters.
|
147 |
Solução numérica em jatos de líquidos metaestáveis com evaporação rápida. / Numerical solution in jet of liquid superheat with rapid evaporation.Jorge Andrés Julca Avila 16 May 2008 (has links)
Este trabalho estuda o fenômeno de evaporação rápida em jatos de líquidos superaquecidos ou metaestáveis numa região 2D. O fenômeno se inicia, neste caso, quando um jato na fase líquida a alta temperatura e pressão, emerge de um diminuto bocal projetando-se numa câmara de baixa pressão, inferior à pressão de saturação. Durante a evolução do processo, ao cruzar-se a curva de saturação, se observa que o fluido ainda permanece no estado de líquido superaquecido. Então, subitamente o líquido superaquecido muda de fase por meio de uma onda de evaporação oblíqua. Esta mudança de fase transforma o líquido superaquecido numa mistura bifásica com alta velocidade distribuída em várias direções e que se expande com velocidades supersônicas cada vez maiores, até atingir a pressão a jusante, e atravessando antes uma onda de choque. As equações que governam o fenômeno são as equações de conservação da massa, conservação da quantidade de movimento, e conservação da energia, incluindo uma equação de estado precisa. Devido ao fenômeno em estudo estar em regime permanente, um método de diferenças finitas com modelo estacionário e esquema de MacCormack é aplicado. Tendo em vista que este modelo não captura a onda de choque diretamente, um segundo modelo de falso transiente com o esquema de \"shock-capturing\": \"Dispersion-Controlled Dissipative\" (DCD) é desenvolvido e aplicado até atingir o regime permanente. Resultados numéricos com o código ShoWPhasT-2D v2 e testes experimentais foram comparados e os resultados numéricos com código DCD-2D v1 foram analisados. / This study analyses the rapid evaporation of superheated or metastable liquid jets in a two-dimensional region. The phenomenon is triggered, in this case, when a jet in its liquid phase at high temperature and pressure, emerges from a small aperture nozzle and expands into a low pressure chamber, below saturation pressure. During the evolution of the process, after crossing the saturation curve, one observes that the fluid remains in a superheated liquid state. Then, suddenly the superheated liquid changes phase by means of an oblique evaporation wave. This phase change transforms the liquid into a biphasic mixture at high velocity pointing toward different directions, with increasing supersonic velocity as an expansion process takes place to the chamber back pressure, after going through a compression shock wave. The equations which govern this phenomenon are: the equations of conservation of mass, momentum and energy and an equation of state. Due to its steady state process, the numerical simulation is by means of a finite difference method using the McCormack method of Discretization. As this method does not capture shock waves, a second finite difference method is used to reach this task, the method uses the transient equations version of the conservation laws, applying the Dispersion-Controlled Dissipative (DCD) scheme. Numerical results using the code ShoWPhasT-2D v2 and experimental data have been compared, and the numerical results from the DCD-2D v1 have been analysed.
|
148 |
Electrically conductive melt-processed blends of polymeric conductive additives with styrenic thermoplasticsNg, Yean Thye January 2012 (has links)
The growing demand in portable and compact consumer devices and appliances has resulted in the need for the miniaturisation of electronic components. These miniaturised electronic components are sensitive and susceptible to damage by voltages as low as 20V. Electrically conductive styrenic thermoplastics are widely used in electronic packaging applications to protect these sensitive electronic components against electro-static discharge (ESD) during manufacturing, assembly, storage and shipping. Such ESD applications often require the optimal volume resistance range of ≥ 1.0x105 to < 1.0x108 Ω. The best known method to render styrenic thermoplastics conductive is by the incorporation of conductive fillers, such as carbon black but the main limitation is the difficulty in controlling the conductivity level due to the steep percolation curve. Thus the aim of this research is to develop electrically conductive styrenic thermoplastics by blending several styrenic resins with polymeric conductive additives to achieve optimal volume resistance range for ESD applications with the ease in controlling the conductivity level.
|
149 |
Structures optiques dissipatives en cavité laser à fibre / Dissipative optical structures in fiber laser cavityChouli, Souad 08 July 2011 (has links)
Cette thèse concerne l'étude de la dynamique des structures optiques dissipatives observées dans une cavité à gestion de dispersion utilisant l'évolution non linéaire de la polarisation comme technique de blocage de modes. Nous avons montré expérimentalement l'existence d'une transition graduelle entre le régime de fonctionnement continu et le régime de fonctionnement multi-impulsionnel. Nous nous sommes intéressés à l'état intermédiaire où il nous a été possible d'obtenir divers régimes inédits et d'étudier ainsi le comportement collectif des solitons dissipatifs en présence d'un fond continu. La dynamique de "la pluie de solitons" est une manifestation complexe et fascinante constituée de trois composantes de champ : le fond continu, les solitons de dérive et la phase condensée. Elle s'accompagne d'une circulation d'énergie à travers ces trois composantes. Le mouvement relatif des solitons de dérive ainsi que l'asymétrie temporelle présentent les caractéristiques majeures qui distinguent cette dynamique des autres. D'autres types d'auto-organisation ont été observés et étudiés, comme "le relargage des solitons de la phase condensée" ou bien encore "la vobulation du train de solitons". Nous nous sommes intéressés aussi à la propagation d'une seule impulsion dans la cavité. Pour la première fois, une importante dynamique de respiration spectrale a été prédite dans une cavité à gestion de la dispersion. Nous avons montré qu'une compression temporelle de l'impulsion est accompagnée d'un élargissement spectral d'une grande ampleur dans la partie passive de la cavité et que la largeur de l'impulsion peut dépasser la largeur de la bande passante du milieu amplificateur. Nous avons étudié la dynamique de la respiration spectrale, l'extraction et l'optimisation du signal laser en fonction des paramètres de la cavité et nous avons présenté les caractéristiques d'une cavité qui permet la génération d'une impulsion dont sa largeur spectrale est supérieure à la largeur de la bande passante de l'amplificateur d'un facteur de 2.4. Les dynamiques présentées dans cette thèse témoignent de la complexité et de la richesse de la dynamique dissipative des lasers à fibre fonctionnant en régime de blocage de modes passif par évolution non linéaire de la polarisation. / This thesis presents a study of the nonlinear dissipative dynamics of localized of self organized structures in passively mode-locked fiber laser through nonlinear polarization evolution. We reveal the existence of a gradual transition from the quasi-cw to mode locked dynamics in the multi-pulsing regime. We emphasize on the intermediate state, where various new dynamics are observed. We study collective behaviors of dissipative solitons in the presence of a continuous background. One of the complex and attractive dynamics presented is the "soliton rain", which composed of three field components : continuous modes of background, drifting of solitons and condensed phase solitons. This dynamic appears when the energy flows through the three components. The relative motion of the drifting solitons and the temporal asymmetry present the major characteristics that distinguish this dynamic. Other types of self-organizations of solitons were observed and studied as the "release of the solitons from the condensed phase" and the "chirped trains with condensed soliton phase". We were also interested in the single pulse propagation. For the first time, an important dynamics of spectral breathing was predicted in a dispersion-managed cavity. We showed that pulse compression dynamics in the passive anomalous fiber can be accompanied by a significant enhancement of the spectral width and that the width of the pulse can exceed the amplifier bandwidth. We studied, the extraction and the optimization of the signal laser according to the parameters of the cavity and we presented the characteristics of a cavity delivering ultra short pulses with a spectral width exceeding the amplifier bandwidth by a factor of 2.4. The dynamics presented in this thesis show the complexity and variety of the dissipative dispersion-managed dynamics in fiber laser mode locked through nonlinear polarization evolution.
|
150 |
Dynamique quantique de transferts d'électron dans des systèmes environnés à fort couplage / Quantum dynamics of electron tranfer in strongly coupled environmentsMangaud, Etienne 12 July 2016 (has links)
Les transferts d'électron sont au cœur de nombreux processus d'intérêts chimiques, biologiques ou photochimiques comme, par exemple, dans la technologie du photovoltaïque ou la photosynthèse où ils ne sont que rarement isolés. Par ailleurs, des résultats expérimentaux tendent à montrer que les phénomènes quantiques, notamment les superpositions d'états ou cohérences, peuvent se maintenir sur l'échelle de temps du transfert d'électron même en présence d'un environnement. Dans ce travail, le transfert d'électron est étudié dans trois types de systèmes moléculaires. Le premier est un transfert intermoléculaire dans une hétérojonction oligothiophène-fullerène modélisant une interface de séparation de charge pour de futures cellules photovoltaïques organiques. Le second est un transfert intramoléculaire dans des composés organiques à valence mixte où l'on étudie l'effet d'un pont avec une chaîne croissante de n-paraphénylènes dans des polymères aromatiques avec des sites donneur-accepteur (1,4-diméthoxy-3-méthylphénylènes). Le troisième est le transfert intermoléculaire dans une chaîne de tryptophanes dans une chromoprotéine cryptochrome. Dans tous ces cas, une attention particulière est portée à une modélisation réaliste. Dans ce contexte, il est crucial de faire une partition judicieuse entre l'ensemble des degrés de liberté et de décrire proprement l'interaction entre ceux impliqués dans le transfert et ceux qualifiés d'environnement. A cette fin, un hamiltonien décrivant un système électronique donneur-accepteur couplé à un bain d'oscillateurs harmoniques a été paramétré en utilisant notamment la méthode de la DFT contrainte (cDFT). Le bain d'oscillateurs a été décrit par une analyse en modes normaux ou via la fluctuation de l'écart énergétique obtenue par des calculs de type QM/MM. Les systèmes étudiés présentent tous des environnements fortement couplés et structurés nécessitant d'explorer des stratégies peu conventionnelles. Dans un modèle d'environnement formé d'un nombre fini d'oscillateurs traités explicitement, le traitement dynamique nécessite d'utiliser des méthodes multidimensionnelles telles que la méthode multi-couches multiconfigurationnelle de produits de Hartree dépendant du temps (ML-MCTDH). Dans l'approche de dynamique dissipative où le bain intervient seulement par ses propriétés statistiques il est alors nécessaire de se tourner vers une méthode non perturbative telle que les matrices hiérarchiques. A côté de ces approches exactes, une autre stratégie consiste à effectuer une transformation de coordonnées afin de définir une coordonnée collective incluse avec le système électronique qui est elle-même couplée à un bain secondaire. La propagation dynamique peut alors être effectuée par une équation-maîtresse approchée s'appuyant sur la théorie de perturbation. Comme principaux résultats, nous analysons en détail le domaine de validité des différentes méthodes utilisées puis expliquons le comportement dynamique des différents cas amenant à une délocalisation facile ou à un piégeage de la charge. Par là même, nous montrons que la méthodologie proposée, appliquée à des systèmes-modèles dans ce travail, est bien adaptée pour l'analyse de l'influence mutuelle entre le transfert de charge et les déformations nucléaires, une situation prototypique pour de nombreux processus importants dans les systèmes chimiques et biologiques. / Electron transfer reactions are at stake in several chemical, biological or photochemical processes of great interest as, for instance, photovoltaic technology or photosynthesis where they are rarely isolated. Furthermore, experimental results show that quantum phenomena, notably superpositions of states or coherences, can persist on the time scale of the electron transfer even in the presence of an environment. In this work, electron transfer is studied in three types of molecular systems. The first one is an intermolecular transfer in an oligothiophene-fullerene heterojonction modelling a charge separation interface for future organic photovoltaic devices. The second one is an intramolecular transfer in mixed-valence organic compounds where the bridge effect of an increasing n-paraphenylens chain is studied on aromatic polymers with donor-acceptor sites (1-4,dimethoxy-3-methylphenylens). The third one is an intermolecular transfer in a tryptophan chain of a cryptochrome chromoprotein. In all these cases, a special attention is given to realistic modelling. In this context, it is crucial to define carefully the partition between the degrees of freedom, in particular amongst those implied in the transfer and those qualified to be part of an environment. To this end, a Hamiltonian describing a donor-acceptor electronic system coupled to a bath of harmonic oscillators is parameterized using the constrained DFT method (cDFT). The oscillators' bath is described by a normal mode analysis or via the electronic gap fluctuation obtained by QM/MM calculations. The systems under study turn out to be strongly coupled, and structured which requires to explore non-conventional strategies. In a model environment constituted of a finite number of oscillators treated explicitly, the dynamics is performed by multidimensional quantum propagation methods such as the multi-layer multiconfigurational time-dependent Hartree method (ML-MCTDH). In the dissipative approach, where the bath acts only by its statistical properties, it is mandatory to turn to non-perturbative methods such as the hierarchical equations of motion approach. Apart from these exact approaches, an alternative strategy consists in carrying out a change of coordinates in order to define a collective bath mode included in the electronic system, which itself is coupled to a secondary bath. The dynamical propagation can then be done by an approximated quantum master equation using perturbation theory. As main results, we show in detail the domain of validity of the different methods presented and explain the dynamical behaviour of the different cases leading to an easy delocalization or a trapping of the charge. Hence, we show that the methodology applied in model systems are well suited for the analysis of the mutual interplay between the charge transfer and nuclear deformations, a prototypical situation in many important chemical and biological processes.
|
Page generated in 0.3799 seconds