• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 40
  • 34
  • 15
  • 8
  • 8
  • 7
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 502
  • 160
  • 88
  • 60
  • 54
  • 53
  • 48
  • 47
  • 46
  • 41
  • 32
  • 31
  • 31
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Proposed South African management framework for the implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments

Nolting, Janine January 2011 (has links)
South Africa, strategically situated at the southern tip of Africa, is edged on three sides by almost 3000 km of coastline surrounded by the Indian Ocean and the Atlantic Ocean (South African Tourism, 2011). This vast ocean expanse is responsible for conveying approximately 96% of South Africa’s exports (Brand South Africa, 2011). Despite the positive economic effects of the shipping industry, translocation of harmful organisms and pathogens via ballast water and sediments inside ballast water tanks has far reaching global environmental (and economic) impacts (Oliviera, 2008:1; David and Gollasch, 2008:1966). Ballast water is the water that is taken on in order to manage the draft of the ship, to help with propulsion, manoeuvrability, trim control, list and stability (Oliviera, 2008:2). The discharge of ballast water into the world’s oceans has resulted in the transfer of ecologically harmful sea-life into non-native environments (IMO, 2011), resulting in major environmental threats to our oceans (Bax, Williamson, Aguero, Gonzalez and Geeves, 2003:313). Various international documents have been developed to deal with the ballast water issue, culminating in the introduction of the International Convention for the Control and Management of Ships’ Ballast Water and Sediments (“the Convention”) in 2004. The Convention aims at achieving a reduction in the transfer and subsequent impacts of aquatic organisms via the ballast water and sediment of ships. On a local level, South Africa does not have direct legislation or regulations dealing with ballast water (Duncan, 2007:34) and relies on the combination of a number of pieces of legislation relating to environmental management, coastal management, biodiversity, alien invasive species control, port control and ship safety (National Environmental Management Act, 1998, National Environmental Management: Biodiversity Act, 2004, National Environmental Management: Integrated Coastal Management Act, 2009, National Ports Act, 2005 and Merchant Shipping Act, 1951). Although the Convention was ratified by South Africa in 2008 (Department of International Relations and Cooperation, 2011) it is still not in force and there still exists no other consolidated legal mechanism through which ballast water is managed. This research has investigated the various roles, responsibilities and mandates of South African competent authorities under the aforementioned legislation in managing ballast water, and has determined that there is definite legislative and institutional fragmentation as well as overlaps. A comparative analysis of management frameworks developed both locally and internationally was conducted in order to develop a management framework for ballast water management in South Africa. Various legislative, institutional and functional aspects were identified and adapted for inclusion in a South African management framework. A co-ordinated approach to ballast water management has been developed in the management framework which is anticipated to result in more definitive roles and responsibilities of the various South African departments involved in the management of ballast water and implementation of the Convention.
232

Ultrasonic-time-domain-reflectometry as a real time non-destructive visualisation technique of concentration polarisation and fouling on reverse osmosis membranes

Koen, Louis Johannes 12 1900 (has links)
Thesis (MIng)--University of Stellenbosch, 2000. / ENGLISH ABSTRACT: Fouling is readily acknowledged as one of the most critical problems limiting the wider application of membranes in liquid separation processes. A better understanding of fouling layer formation and its monitoring is needed in order to improve on existing cleaning techniques. Plant operation can be optimised if fouling can be monitored by noninvasion means either on the plant itself or on an attached monitoring device. The overall scope of this research was to develop a non-destructive, real-time, in situ visualisation technique or device for concentration polarisation and fouling layer monitoring. Ultrasonic-time-domain-reflectometry (UTDR) was employed as a visualisation technique to provide real-time characterisation of the fouling layer. A 24 cm-long rectangular flat sheet aluminium cell was designed and used as separation device for a desalination system. The experimental results obtained using this module confirmed that there are an excellent correspondence between the flux decline behaviour and the UTDR response from the membrane. The ultrasonic technique could effectively detect fouling layer initiation and growth on the membrane in real-time. In addition to the measurement of fouling, the ultrasonic technique was also successfully employed for monitoring membrane cleaning. Since no real-time permeation data is available during cleaning operations in industrial applications, a UTDR monitoring device may prove to be a very valuable technique in optimising cleaning strategies. The technique was further tested on an 8-inch diameter spiral wrap industrial module and good results were obtained. Stagnant zones, as well as flux flow behaviour inside the module could be determined. However, more research IS needed to fully understand the complex phenomena inside a spiral wrap module. Overall, the UTDR technique and its use in monitoring devices have a major impact in the membrane industry due to its extremely powerful capabilities. / AFRIKAANSE OPSOMMING: Membraan-bevuiling of -verstopping is die grootste struikelblok wat die algemene aanwending van membrane vir verskillende watersuiweringsprosesse negatief beinvloed. 'n Beter begrip van membraan-bevuiling, asook beter metingsmetodes daarvan is nodig om op bestaande skoonmaaktegnieke te verbeter. Die hoofdoel van hierdie studie was die ontwikkeling van 'n nie-destruktiewe-in-lyn visuele tegniek vir die meting van konsentrasie polarisasie en membraan-bevuiling. Deur gebruik te maak van ultrasoniese klank golwe, is 'n tegniek ontwikkel wat 'n direkte visuele aanduiding kon gee van die toestand van membraan-bevuiling binnein die module. 'n Reghoekige aluminium-module, 24 cm lank, is ontwerp en gebou waarbinne die membraan geplaas is vir die skeidingsproses. Resultate dui daarop dat daar 'n uitstekende verband bestaan tussen die afname in permeaatvloei en die ultrasoniese eggo vanaf die membraan. Die ultrasoniese tegniek kon die vorming van en toename in membraan-bevuiling doeltreffend karakteriseer. In teenstelling hiermee, is die tegniek ook suksesvol aangewend om die skoonmaak-proses van membrane te ondersoek. Met min of geen data beskikbaar vir die skoonmaak-proses van membrane in die industriële sektor, het die tegniek enorme potensiaal in die optimisering van bestaande skoonmaak-tegnieke. Die tegniek is verder aangewend op 'n industriële 8-duim deursnee spiraal-module en goeie resultate is verkry. Stagnante sones asook vloed-vloei-patrone binne-in die module kon suksesvol bepaal word. Baie navorsing is egter nog nodig om die ingewikkelde data wat gegenereer word tydens die ondersoek van 'n spiraal-module ten volle te verstaan. Die enorme potensiaal en moontlikhede van die ultrasoniese tegniek kan die begin wees van 'n revolusie in die membraan-industrie.
233

Modelling and simulation of membrane bioreactors for wastewater treatment

Janus, Tomasz January 2013 (has links)
The work presented in this thesis leads to the formulation of a dynamic mathematical model of an immersed membrane bioreactor (iMBR) for wastewater treatment. This thesis is organised into three parts, each one describing a different set of tasks associated with model development and simulation. In the first part, the Author qualitatively and quantitatively compares various published activated sludge models, i.e. models of biochemical processes associated with bacterial growth, decay, lysis and substrate utilisation in activated sludge systems. As the thesis is focused on modelling membrane bioreactors (MBRs) which are known to experience membrane fouling as a result of adsorption of biopolymers present in the bulk liquid onto and within the membrane, all activated sludge models considered in this thesis are able to predict, with various levels of accuracy, the concentrations of biopolymeric substances, namely soluble microbial products (SMP) and extracellular polymeric substances (EPS). Some of the published activated sludge models dedicated to modelling SMP and EPS kinetics in MBR systems were unable to predict the SMP and EPS concentrations with adequate levels of accuracy, without compromising the predictions of other sludge and wastewater constituents. In other cases, the model equations and the assumptions made by their authors were questionable. Hence, two new activated sludge models with SMP and EPS as additional components have been formulated, described, and simulated. The first model is based on the Activated Sludge Model No. 1 (ASM1) whereas the second model is based on the Activated Sludge Model No. 3 (ASM3). Both models are calibrated on two sets of data obtained from a laboratory-scale system and a full-scale system and prove to be in very good agreement with the measurements. The second part of this thesis explains the development of two membrane fouling models. These models are set to describe the loss of membrane permeability during filtration of various solutions and suspensions. The main emphasis is placed on filtration of activated sludge mixtures, however the models are designed to be as general as feasibly possible. As fouling is found to be caused by a large number of often very complex processes which occur at different spatial as well as temporal scales, the two fouling models developed here have to consider a number of significant simplifications and assumptions. These simplifications are required to balance the model's accuracy, generality and completeness with its usability in terms of execution times, identifiability of parameters and ease of implementation in general purpose simulators. These requirements are necessary to ascertain that long term simulations as well as optimisation and sensitivity studies performed in this thesis either individually on fouling models or on the complete model of a MBR can be carried out within realistic time-scales. The first fouling model is based on an idea that fouling can be subdivided into just two processes: short-term reversible fouling and long-term irreversible fouling. These two processes are described with two first order ordinary differential equations (ODEs). Whilst the first model characterises the membrane filtration process from an observer's input-output point of view without any rigorous deterministic description of the underlying mechanisms of membrane fouling, the second model provides a more theoretical and in-depth description of membrane fouling by incorporating and combining three classical macroscopic mechanistic fouling equations within a single simulation framework. Both models are calibrated on a number of experimental data and show good levels of accuracy for their designated applications and within the intended ranges of operating conditions. In the third part, the first developed biological model (CES-ASM1) is combined with the behavioural fouling model and the links between these two models are formulated to allow complete simulation of a hollow fibre (HF) immersed membrane bioreactor (iMBR). It is assumed that biological processes affect the membrane through production of mixed liquor suspended solids (MLSS), SMP and EPS which cause pore blockage, cake formation, pore diameter constriction, and affect the specific cake resistance (SCR). The membrane, on the other hand, has a direct effect on the bulk liquid SMP concentration due to its SMP rejection properties. SMP are assumed to be solely responsible for irreversible fouling, MLSS is directly linked to the amount of cake depositing on the membrane surface, whereas EPS content in activated sludge affects the cake's SCR. Other links provided in the integrated MBR model include the effects of air scouring on the rate of particle back-transport from the membrane surface and the effects of MLSS concentration on oxygen mass transfer. Although backwashing is not described in great detail, its effects are represented in the model by resetting the initial condition in the cake deposition equation after each backwash period. The MBR model was implemented in Simulink® using the plant layout adopted in the MBR benchmark model of Maere et al. [160]. The model was then simulated with the inputs and operational parameters defined in [36, 160]. The results were compared against the MBR benchmark model of Maere et al. [160] which, contrary to this work, does not take into account the production of biopolymers, the membrane fouling, nor any interactions between the biological and the membrane parts of an MBR system.
234

Removal of organic foulants from capillary ultrafiltration membranes by use of ultrasound.

Nel, A. M. 03 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2006 / Fouling is a serious problem in membrane filtration, caused by pore plugging and adsorption of rejected macromolecules or other solutes in the membrane system. This requires periodic cleaning of membranes, which can add considerably to the overall cost of plant operation owing to lost productivity related to down-time, the cost of the chemicals used in cleaning, higher pressures and associated pumping costs to maintain membrane productivity, as well as reduced lifetime of the membranes. Ultrasound has recently been suggested as a promising approach to combating fouling in membranes. In principle it can be used on-line and may even eliminate the use of chemical cleaning or alternative measures completely, which could lead to major advances in the development and implementation of membrane technology. The objective of this investigation was therefore to assess the feasibility of using ultrasound to mitigate fouling in capillary ultrafiltration systems applied to water containing natural organic matter. Experimental work was conducted with a small laboratory-scale capillary membrane module. Ultrasound was introduced into the system by means of an ultrasonic probe operating at a fixed frequency of approximately 30 kHz, generating a maximum acoustic power density of 130 W/cm2 with a nominal power output of 50 W (IKA Labortechnik Staufen, United Kingdom, U50). Five systems were investigated, viz. aqueous solution of Congo Red dye, ultrapure water, coloured ground water from the George region, water from the Steenbras dam, as well as an aqueous solution of dextran. In most cases, ultrasonication resulted in an increase in the permeate flux. This increase could partly be attributed to an increase in the temperature and thus a decrease in the viscosity of the fluid and partly to enhanced mass and energy transfer due to sonication. Based on experiments done with the Congo Red dye and ultrapure water, no damage as a result of ultrasonication could be discerned in the membrane filter, except when there was direct contact between the ultrasonic probe and the membrane materials. Permeate quality analyses confirmed that sonication does not damage the membrane material – no degradation of permeate quality was found specifically during sonication intervals. In conclusion, ultrasound indeed appeared to be an effective approach to remove foulants associated with natural organic matter from membranes. However, an issue not addressed by this study, but apparent from the literature, is that the effect of ultrasound is strictly local and this has major implications for the scaleup of such ultrasound systems.
235

Flux enhancement in a spiral wrap ultrafiltration element by using backpulsing

Elarbi, Abdulghader 12 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2009. / AFRIKAANSE OPSOMMING: Die effek van teenpolsing op die aanvuiling van 'n 2.5-duim spiraal kruisvloei ultrafiltrasie element is eksperimenteel ondersoek. Teenpolseksperimente met 'n organiese (dekstraan) oplossing en 'n anorganiese (kaolien) suspensie is uitgevoer deur gebruik te maak van 'n polipropileenmembraan (100 000 molekulêre massa snypunt). Die konsentrasie van die dekstraanoplossing was tussen 250 en 750 mg/L en die konsentrasie van die kaolien oplossing was tussen 100 en 300 mg/L. Teenpolsing behels die aanwending van drukpolse van tussen 100 en 150 kPa aan die kant van die produk (permeaat). Die polstussenposes het gewissel tussen 1 en 15 s en die duur van die polse tussen 0.1 en 0.5 s. Die vloeitempo was tussen 500 en 1500 L/h, en die toegepaste druk was 100 kPa. Eksperimentele resultate het getoon dat terugpols effektief was vir die vermindering van membraanaanvuiling, en die verbetering van vloei deur die membraan. Met aanhoudende terugpolsing het die netto vloei toegeneem met toenemende terugpolsdruk. Daar was 'n effense toename met 'n toename in kruisvloeitempo en 'n sterk afname met toenemende voeroplossingkonsentrasie. Die beste terugpols parameters vir die twee verskillende aanvuilingsmateriale was soos volg: 0.2 s polsduur, 3 s polstussenpose en 150 kPa terugopolsdruk vir die dekstraanoplossing; en 0.2 s polsduur, 5 s polstussenpose en 150 kPa terugopolsdruk vir die kaoliensuspensie. Die beste resulate behaal vir vloei onder hierdie kondisies was 3-maal en 1.5-maal hoër as die vloei behaal sonder polsing, vir dekstraan en kaolien, onderskeidelik. Nadat die membraan aan aanvuiling, gevolg deur terugpolsing, blootgestel is, is dit skoongemaak deur skoon water met terugpolsing te gebruik. Die vloei van die skoon membrane wat voorheen met dekstraan en kaolien aangevuil is was 62% en 71% van die oorspronklike vloei, onderskeidelik. Die Taguchi metode met 'n L9 ortagonale reeks is gebruik om die belangrike terugpolsfaktore te bepaal wat 'n maksimum permeaatvloei tot gevolg gehad het. Die polsdruk het die grootste effek op die membraanvloei gehad. Polstussenpose en polsduur het 'n onbeduidende effek en die dwarsvloeitempo het 'n swak effek op membaanvloei gehad. Daar moet egter opgelet word dat hierdie waarnemings slegs van toepassing is binne die eksperimentele grense soos bepaal in die inleidende ondersoek van hierdie studie.
236

Ultrasonic-time-domain-reflectometry as a real time non-destructive visualisation technique of concentration polarisation and fouling on reverse osmosis membranes

Koen, Louis Johannes 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2000. / ENGLISH ABSTRACT: Fouling is readily acknowledged as one of the most critical problems limiting the wider application of membranes in liquid separation processes. A better understanding of fouling layer formation and its monitoring is needed in order to improve on existing cleaning techniques. Plant operation can be optimised if fouling can be monitored by noninvasion means either on the plant itself or on an attached monitoring device. The overall scope of this research was to develop a non-destructive, real-time, in situ visualisation technique or device for concentration polarisation and fouling layer monitoring. Ultrasonic-time-domain-reflectometry (UTDR) was employed as a visualisation technique to provide real-time characterisation of the fouling layer. A 24 cm-long rectangular flat sheet aluminium cell was designed and used as separation device for a desalination system. The experimental results obtained using this module confirmed that there are an excellent correspondence between the flux decline behaviour and the UTDR response from the membrane. The ultrasonic technique could effectively detect fouling layer initiation and growth on the membrane in real-time. In addition to the measurement of fouling, the ultrasonic technique was also successfully employed for monitoring membrane cleaning. Since no real-time permeation data is available during cleaning operations in industrial applications, a UTDR monitoring device may prove to be a very valuable technique in optimising cleaning strategies. The technique was further tested on an 8-inch diameter spiral wrap industrial module and good results were obtained. Stagnant zones, as well as flux flow behaviour inside the module could be determined. However, more research IS needed to fully understand the complex phenomena inside a spiral wrap module. Overall, the UTDR technique and its use in monitoring devices have a major impact in the membrane industry due to its extremely powerful capabilities. / AFRIKAANSE OPSOMMING: Membraan-bevuiling of -verstopping is die grootste struikelblok wat die algemene aanwending van membrane vir verskillende watersuiweringsprosesse negatief beinvloed. 'n Beter begrip van membraan-bevuiling, asook beter metingsmetodes daarvan is nodig om op bestaande skoonmaaktegnieke te verbeter. Die hoofdoel van hierdie studie was die ontwikkeling van 'n nie-destruktiewe-in-lyn visuele tegniek vir die meting van konsentrasie polarisasie en membraan-bevuiling. Deur gebruik te maak van ultrasoniese klank golwe, is 'n tegniek ontwikkel wat 'n direkte visuele aanduiding kon gee van die toestand van membraan-bevuiling binnein die module. 'n Reghoekige aluminium-module, 24 cm lank, is ontwerp en gebou waarbinne die membraan geplaas is vir die skeidingsproses. Resultate dui daarop dat daar 'n uitstekende verband bestaan tussen die afname in permeaatvloei en die ultrasoniese eggo vanaf die membraan. Die ultrasoniese tegniek kon die vorming van en toename in membraan-bevuiling doeltreffend karakteriseer. In teenstelling hiermee, is die tegniek ook suksesvol aangewend om die skoonmaak-proses van membrane te ondersoek. Met min of geen data beskikbaar vir die skoonmaak-proses van membrane in die industriële sektor, het die tegniek enorme potensiaal in die optimisering van bestaande skoonmaak-tegnieke. Die tegniek is verder aangewend op 'n industriële 8-duim deursnee spiraal-module en goeie resultate is verkry. Stagnante sones asook vloed-vloei-patrone binne-in die module kon suksesvol bepaal word. Baie navorsing is egter nog nodig om die ingewikkelde data wat gegenereer word tydens die ondersoek van 'n spiraal-module ten volle te verstaan. Die enorme potensiaal en moontlikhede van die ultrasoniese tegniek kan die begin wees van 'n revolusie in die membraan-industrie.
237

System hydrodynamics to reduce fouling of air-sparged immersed flat-sheet microfiltration membranes

Hamann, Martin Louis 12 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Immersed membrane systems hold many operational and environmental advantages in biological treatment of wastewater. However, immersed membrane filtration have only found application in niche markets to date because of higher capital and operating costs associated with membrane fouling. But with capital costs on the decline as membranes become less expensive, immersed membrane systems are increasingly considered as an attractive alternative to conventional treatment processes. Operating costs remain high however, since energy intensive techniques such as air-sparging are required to limit membrane fouling. Improving the air-scouring efficiency of air-sparged immersed membranes can significantly reduce operating costs and unlock the immersed membrane system technology to wider application. The aim of this study was to identify factors that will improve air-scouring efficiency in order to produce guidelines that will help in the development of an immersed microfiltration membrane system with a resulting lower operating cost. Although, the research was done on a flat-sheet microfiltration membrane, the guidelines obtained can be used for the development of any immersed microfiltration membrane arrangement. An airlift reactor set-up was chosen for this study. Six system hydrodynamic factors were evaluated in a factorial design to determine their effects on the cross-flow velocity profile. They were the downcomer area to riser area ratio, top clearance distance, bottom clearance distance, aeration intensity, water depth and air sparger location. It was found that the air-scouring efficiency was increased by generating a cross-flow velocity profile with increased magnitude and uniformity, but absolute uniformity of the cross-flow velocity profile was found to be a prerequisite for optimisation of air-scouring efficiency. Downcomer area to riser area ratio was found to be 99.9% significant in determining the magnitude of the cross-flow velocity profile. Two models were developed to respectively predict the relative magnitude and uniformity of the cross-flow velocity profile. By using these two models, a methodology was developed to design an airlift reactor set-up that would produce system hydrodynamics with an improved air-scouring efficiency. / AFRIKAANSE OPSOMMING: Gesonke membraanstelsels beskik oor talle bedryfs- en omgewingsvoordele in biologiese behandeling van afvalwater. Maar weens die hoër kapitaal- en bedryfskostes wat gepaardgaan met membraanbevuiling, kon gesonke membraanstelsels tot op hede nog net toepassing in nismarkte vind. Maar soos kapitaalkoste daal met al hoe goedkoper membrane beskikbaar, word gesonke membraanstelsels al hoe aanlokliker as ‘n alternatief vir konvensionele behandelingsprosesse. Bedryfskostes bly egter hoog aangesien energie-intensiewe tegnieke soos lugborreling benodig word om membraanbevuiling te vertraag. Deur die effektiwiteit van die skropaksie wat lugborreling aan gesonke membrane bied te verbeter, kan ‘n beduidende besparing in bedryfskostes teweeggebring word om sodoende die uitgebreide toepassing van gesonke membraanstelsel tegnologie moontlik te maak. Hierdie studie het ten doel gehad die identifisering van faktore wat lugskropaksie effektiwiteit kan verbeter en om riglyne op te stel vir die ontwikkeling van ‘n gesonke mikrofiltrasie membraanstelsel met gevolglik laer bedryfskostes. Alhoewel hierdie navorsing ‘n plat-blad mikrofiltrasie membraan gebruik het, kan die riglyne steeds vir enige gesonke mikrofiltrasie membraanuitleg gebruik word. Daar is besluit op ‘n lugligter-reaktor opstelling vir hierdie studie. Ses stelselhidrodinamika faktore is geëvalueer in ‘n faktoriale ontwerp om hul effekte op die kruisvloei snelheidsprofiel te bepaal. Hulle was die afvloei-area tot opvloei-area verhouding, topruimte-afstand, bodemruimte-afstand, belugtingsintensiteit, waterdiepte en belugterligging. Daar is bevind dat die lugskropaksie effektiwiteit verhoog word wanneer ‘n kruisvloei snelheidsprofiel geskep word met ‘n verhoogde grootte en gelykvormigheid, maar die absolute gelykvormigheid van die kruisvloei snelheidsprofiel is gevind om ‘n voorvereiste te wees vir optimale effektiwiteit. Afvloei-area tot opvloei-area verhouding is gevind om 99.9% beduidend te wees in die bepaling van die snelheidsprofiel se grootte. Twee modelle is ontwikkel om afsonderlik die relatiewe grootte en gelykvormigheid van die kruisvloei snelheidsprofiel te voorspel. Die modelle is in ‘n metodologie vervat vir die ontwerp van ‘n lugligter opstelling met stelselhidrodinamika wat verbeterde lugskropaksie effektiwiteit sal skep.
238

Water transport study in crosslinked poly(ethylene oxide) hydrogels as fouling-resistant membrane coating materials

Ju, Hao 15 September 2010 (has links)
The major objective of this research is a systematic experimental exploration of hydrophilic materials that can be applied as coating materials for conventional ultrafiltration (UF) membranes to improve their fouling resistance against organic components. This objective is achieved by developing new, fouling-reducing membrane coatings and applying these coatings to conventional UF membranes, which can provide unprecedented reduction in membrane fouling and marked improvements in membrane lifetime. Novel polymeric materials are synthesized via free-radical photopolymerization of mixtures containing poly(ethylene glycol) diacrylate (PEGDA), photoinitiator, and water. PEGDA chain length (n=10-45, where n is the average number of ethylene oxide units in the PEGDA molecule) and water content in the prepolymerization mixture (0-80 wt.%) were varied. Crosslinked PEGDA (XLPEGDA) exhibited high water permeability and good fouling resistance to oil/water mixtures. Water permeability increased strongly with increasing the water content in the prepolymerization mixture. Specifically, for XLPEGDA prepared with PEGDA (n=13), water permeability increased from 0.6 to 150 L um/(m2 h bar) as prepolymerization water content increased from 0 to 80 wt.%. Water permeability also increased with increasing PEGDA chain length. Moreover, water permeability exhibits a strong correlation with equilibrium water uptake. However, solute rejection, probed using poly(ethylene glycol)s of well defined molar mass, decreased with increasing prepolymerization water content and increasing PEGDA chain length. That is, there is a tradeoff between water permeability and separation properties: Materials with high water permeability typically exhibit low solute rejections, and vice versa. The fouling resistance of XLPEGDA materials was characterized via contact angle measurements and static protein adhesion experiments. From these results, XLPEGDA surfaces are more hydrophilic in samples prepared at higher prepolymerization water content or with longer PEGDA chains, and the more hydrophilic surfaces generally exhibit less BSA accumulation. These materials were applied to polysulfone (PSF) UF membranes to form coatings on the surface of the PSF membranes. Oil/water crossflow filtration experiments showed that the coated PSF membranes had water flux values 400% higher than that of an uncoated PSF membrane after 24 h of operation, and the coated membranes had higher organic rejection than the uncoated membranes. / text
239

Techno-environmental assessment of marine gas turbines for the propulsion of merchant ships

Bonet, Mathias Usman January 2011 (has links)
This research study seeks to evaluate the techno-economic and environmental implications of a variety of aero-derivative marine gas turbine cycles that have been modelled for the propulsion of different types of merchant ships. It involves the installation and operation of gas turbine propulsion systems in different marine environmental conditions and aims to evaluate the effect of the aerodynamic and hydrodynamic variations expected to be encountered by these ships when they navigate across different climates and oceans along selected fixed trade routes. A combination of simulation tools developed in Cranfield University at the Department of Power and Propulsion including the validated gas turbine modelling and simulation code called “Turbomatch” and the “APPEM” simulation code for the analysis and Prediction of exhaust pollutants have been used along with the ongoing development of an integrated marine gas turbine propulsion system simulation platform known as “Poseidon”. It is the main objective of this research to upgrade the competence level of “Poseidon” so as to facilitate the conduct of a variety of longer and more complex oceangoing voyage scenarios through the introduction of an ambient temperature variation numerical module. Expanding the existing code has facilitated the prediction of the effect of varying aerodynamic and hydrodynamic conditions that may be encountered by gas turbine propulsion systems when such ships navigate through unstable ocean environments along their fixed trade routes at sea. The consequences of operating the marine gas turbines under ideal weather conditions has been investigated and compared with a wide range of severe operating scenarios under unstable weather and sea conditions in combination with hull fouling has been assessed. The techno-economic and environmental benefits of intercooling/exhaust waste heat recuperation of the ICR model have been predicted through the evaluation of different ship propulsion performance parameters in a variety of voyage analysis leading to the prediction of fuel consumption quantities, emission of NOx, CO2, CO and UHCs and the estimation of the HPT blade life as well. The different gas turbine cycle configurations of the research were found to respond differently when operated under various environmental profiles of the ship’s trade route and the number of units for each model required to meet the power plant capacity in each scenario and for each ship was assessed. The study therefore adds to the understanding of the operating costs and asset management of marine gas turbine propulsion systems of any ocean carrier and in addition it reveals the economic potentials of using BOG as the main fuel for firing gas turbine propulsion plants of LNG Carriers.
240

Non-destructive evaluation of railway trackbed ballast

De Bold, Robert Paul January 2011 (has links)
The “green agenda” combined with highway congestion has accelerated the demand for increased freight and passenger travel on the world’s railways. These increases have driven demand for more efficient and rapid investigation of trackbed ballast. Network Rail and other rail infrastructure operators spend significant financial sums on inspecting, tamping, adjusting, cleaning, and replacing trackbed ballast. Such maintenance is often to the detriment of normal network operation. Industry requires a method of ballast evaluation that is non-intrusive, cheap, can appraise long stretches of track in a short period of time, and give a fingerprinting result from which time-to-maintenance can be calculated and planned. Thus, the aim was to develop evaluation methods using non-destructive testing techniques. A 10-year old full-scale trackbed composed of variously fouled ballast was re-visited and used for experimentation. The condition of the ballast was calculated using the Ionescu Fouling Index. Earlier research at the University of Edinburgh enabled researchers worldwide to characterise ballast using ground penetrating radar (GPR). This research was repeated, validated and taken forward in a series of GPR experiments on the trackbed using a range of antennas from 500MHz to 2.6GHz. New "scatter" metrics were developed to determine ballast condition from the GPR waveforms. These metrics were then used to predict the Ionescu Fouling Index with a correlation coefficient greater than 0.9. One of the current approaches to evaluating the stiffness of railway ballast is to use a Falling Weight Deflectometer (FWD). The viability of using a Prima 100 mini-FWD on railways to measure stiffness was determined and deemed to be ineffective on ballast. The applicability of the impulse response technique on railways was determined. An instrumented hammer was used to excite the ballast, with a geophone measuring the response. The Frequency Response Function of this was successfully correlated with the Ionescu Fouling Index with a correlation coefficient also greater than 0.9. Finally, using GPR data and measured stiffness data collected by Banverket, Sweden, a numerical model to successfully relate radar responses to stiffness was developed.

Page generated in 0.0646 seconds