• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-human primates as models for craniofacial ontogeny in Neandertals and modern humans

January 2020 (has links)
archives@tulane.edu / The goal of this project was to examine patterns of craniofacial ontogeny in three species of baboons, Papio anubis (n = 55), P. cynocephalus (n = 43), and P. ursinus (n = 42), and three species of macaques, Macaca. cyclopis (n = 34), M. fascicularis (n = 55), and M. mulatta (n = 59) to determine the degree to which they exhibited similarities and differences in ontogeny, and then to apply those findings to Neandertals (n = 12) and modern humans (n = 42) to better understand ontogenetic variation within Homo. Macaques and baboons were chosen as model species because, like Neandertals and modern humans, they have relatively large geographic ranges, and this study aimed to investigate whether that had any impact on shifts in ontogeny. First, virtual 3D models of each individual were created in Agisoft Photoscan. Then 3D coordinates from 39 type I and type II landmarks representing the entire cranium from each individual were collected in Stratovan Checkpoint. Missing landmarks were estimated in R and statistical analyses were conducted in Paleontological Statistics (PAST). The results indicate that Neandertals and modern humans share parallel postnatal growth trajectories, which is in agreement with existing literature. However, there was some indication of non-parallel trajectories among baboons and macaques. Specifically, in some, though not all, aspects of shape, P. anubis and P. ursinus have divergent trajectories, as does M. cyclopis compared to both M. fascicularis and M. mulatta. One possible explanation for these differences lies in their geographic ranges. Although there is interspecific overlap in baboon ranges and baboons are known to hybridize, P. anubis and P. ursinus ranges do not touch. Similarly, although there is overlap in the ranges of M. fascicularis and M. mulatta and evidence of interbreeding between the two species, M. cyclopis is isolated on the island of Taiwan. Thus, while additional data, especially in terms of larger juvenile sample sizes are needed to confirm this pattern, the results of this study suggest possible subtle divergences in ontogeny of species whose ranges do not overlap and who therefore do not hybridize in their natural environments. / 1 / Whitney Karriger

Page generated in 0.0665 seconds