• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling the Transmission Dynamics of the Dengue Virus

Katri, Patricia 21 May 2010 (has links)
Dengue (pronounced den'guee) Fever (DF) and Dengue Hemorrhagic Fever (DHF), collectively known as "dengue," are mosquito-borne, potentially mortal, flu-like viral diseases that affect humans worldwide. Transmitted to humans by the bite of an infected mosquito, dengue is caused by any one of four serotypes, or antigen-specific viruses. In this thesis, both the spatial and temporal dynamics of dengue transmission are investigated. Different chapters present new models while building on themes of previous chapters. In Chapter 2, we explore the temporal dynamics of dengue viral transmission by presenting and analyzing an ODE model that combines an SIR human host- with a multi-stage SI mosquito vector transmission system. In the case where the juvenile populations are at carrying capacity, juvenile mosquito mortality rates are sufficiently small to be absorbed by juvenile maturation rates, and no humans die from dengue, both the analysis and numerical simulations demonstrate that an epidemic will persist if the oviposition rate is greater than the adult mosquito death rate. In Chapter 3, we present and analyze a non-autonomous, non-linear ODE system that incorporates seasonality into the modeling of the transmission of the dengue virus. We derive conditions for the existence of a threshold parameter, the basic reproductive ratio, denoting the expected number of secondary cases produced by a typically infective individual. In Chapter 4, we present and analyze a non-linear system of coupled reaction-diffusion equations modeling the virus' spatial spread. In formulating our model, we seek to establish the existence of traveling wave solutions and to calculate spread rates for the spatial dissemination of the disease. We determine that the epidemic wave speed increases as average annual, and in our case, winter, temperatures increase. In Chapter 5, we present and analyze an ODE model that incorporates two serotypes of the dengue virus and allows for the possibility of both primary and secondary infections with each serotype. We obtain an analytical expression for the basic reproductive number, R_0, that defines it as the maximum of the reproduction numbers for each strain/serotype of the virus. In each chapter, numerical simulations are conducted to support the analytical conclusions.
2

Periodic and Quasi-Periodic Solutions of some Non-Linear Hamiltonian PDE's / Solutions périodiques et quasi-périodiques de certaines EDP hamiltoniennes non-linéaires

Khayamian, Chiara 13 June 2017 (has links)
Les équations aux dérivées partielles (EDP) permettent d’aborder d’un point de vue mathématique des phénomènes observés dans tous les domaines des sciences. Certaines EDP non-linéaires modélisent des problèmes de mécanique statistique, mécanique des fluides, théories de la gravitation ou des mathématiques financières.L’objectif de ce travail de thèse est l’étude de certains problèmes d’ EDP non-linéaires et hamiltoniennes et la recherche des leurs solutions périodiques et quasi-périodiques. / The aim of this thesis is the research of periodic and quasi-periodic solutions for some non-linear hamiltonian PDEs.
3

Structures contrôlées pour les équations aux dérivées partielles / Controlled structures for partial differential equations

Furlan, Marco 26 June 2018 (has links)
Le projet de thèse comporte différentes directions possibles: a) Améliorer la compréhension des relations entre la théorie des structures de régularité développée par M. Hairer et la méthode des Distributions Paracontrolées développée par Gubinelli, Imkeller et Perkowski, et éventuellement fournir une synthèse des deux. C'est très spéculatif et, pour le moment, il n'y a pas de chemin clair vers cet objectif à long terme. b) Utiliser la théorie des Distributions Paracontrolées pour étudier différents types d'équations aux dérivés partiels: équations de transport et équations générales d'évolution hyperbolique, équations dispersives, systèmes de lois de conservation. Ces EDP ne sont pas dans le domaine des méthodes actuelles qui ont été développées principalement pour gérer les équations d'évolution semi-linéaire parabolique. c) Une fois qu'une théorie pour l'équation de transport perturbée par un signal irregulier a été établie, il sera possible de se dédier à l'étude des phénomènes de régularisation par le bruit qui, pour le moment, n'ont étés étudiés que dans le contexte des équations de transport perturbées par le mouvement brownien, en utilisant des outils standard d'analyse stochastique. d) Les techniques du Groupe de Renormalisation (GR) et les développements multi-échelles ont déjà été utilisés à la fois pour aborder les EDP et pour définir des champs quantiques euclidiens. La théorie des Distributions Paracontrolées peut être comprise comme une sorte d'analyse multi-échelle des fonctionnels non linéaires et il serait intéressant d'explorer l'interaction des techniques paradifférentielles avec des techniques plus standard, comme les "cluster expansions" et les méthodes liées au GR. / The thesis project has various possible directions: a) Improve the understanding of the relations between the theory of Regularity Structures developed by M.Hairer and the method of Paracontrolled Distributions developed by Gubinelli, Imkeller and Perkowski, and eventually to provide a synthesis. This is highly speculative and at the moment there are no clear path towards this long term goal. b) Use the theory of Paracontrolled Distributions to study different types of PDEs: transport equations and general hyperbolic evolution equation, dispersive equations, systems of conservation laws. These PDEs are not in the domain of the current methods which were developed mainly to handle parabolic semilinear evolution equations. c) Once a theory of transport equation driven by rough signals have been established it will become possible to tackle the phenomena of regularization by transport noise which for the moment has been studied only in the context of transport equations driven by Brownian motion, using standard tools of stochastic analysis. d) Renormalization group (RG) techniques and multi-scale expansions have already been used both to tackle PDE problems and to define Euclidean Quantum Field Theories. Paracontrolled Distributions theory can be understood as a kind of mul- tiscale analysis of non-linear functionals and it would be interesting to explore the interplay of paradifferential techniques with more standard techniques like cluster expansions and RG methods.

Page generated in 0.0558 seconds