• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos bayesianos semi-paramétricos para dados binários / Bayesian semi-parametric models for binary data

Diniz, Márcio Augusto 11 June 2015 (has links)
Este trabalho propõe modelos Bayesiano semi-paramétricos para dados binários. O primeiro modelo é uma mistura em escala que permite lidar com discrepâncias relacionadas a curtose do modelo Logístico. É uma extensão relevante a partir do que já foi proposto por Basu e Mukhopadhyay (2000) ao possibilitar a interpretação da distribuição a priori dos parâmetros através de razões de chances. O segundo modelo usufrui da mistura em escala em conjunto com a transformação proposta por \\Yeo e Johnson (2000) possibilitando que a curtose assim como a assimetria sejam ajustadas e um parâmetro informativo de assimetria seja estimado. Esta transformação é muito mais apropriada para lidar com valores negativos do que a transformação de Box e Cox (1964) utilizada por Guerrero e Johnson (1982) e é mais simples do que o modelo proposto por Stukel (1988). Por fim, o terceiro modelo é o mais geral entre todos e consiste em uma mistura de posição e escala tal que possa descrever curtose, assimetria e também bimodalidade. O modelo proposto por Newton et al. (1996), embora, seja bastante geral, não permite uma interpretação palpável da distribuição a priori para os pesquisadores da área aplicada. A avaliação dos modelos é realizada através de medidas de distância de probabilidade Cramér-von Mises, Kolmogorov-Smirnov e Anderson-Darling e também pelas Ordenadas Preditivas Condicionais. / This work proposes semi-parametric Bayesian models for binary data. The first model is a scale mixture that allows handling discrepancies related to kurtosis of Logistic model. It is a more interesting extension than has been proposed by Basu e Mukhopadyay (1998) because this model allows the interpretation of the prior distribution of parameters using odds ratios. The second model enjoys the scale mixture together with the scale transformation proposed by Yeo and Johnson (2000) modeling the kurtosis and the asymmetry such that a parameter of asymmetry is estimated. This transformation is more appropriate to deal with negative values than the transformation of Box e Cox (1964) used by Guerrero e Johnson (1982) and simpler than the model proposed by Stukel (1988). Finally, the third model is the most general among all and consists of a location-scale mixture that can describe kurtosis and skewness also bimodality. The model proposed by Newton et al (1996), although general, does not allow a tangible interpretation of the a priori distribution for reseachers of applied area. The evaluation of the models is performed through distance measurements of distribution of probabilities Cramer-von Mises Kolmogorov-Smirnov and Anderson-Darling and also the Conditional Predictive sorted.
2

Modelos bayesianos semi-paramétricos para dados binários / Bayesian semi-parametric models for binary data

Márcio Augusto Diniz 11 June 2015 (has links)
Este trabalho propõe modelos Bayesiano semi-paramétricos para dados binários. O primeiro modelo é uma mistura em escala que permite lidar com discrepâncias relacionadas a curtose do modelo Logístico. É uma extensão relevante a partir do que já foi proposto por Basu e Mukhopadhyay (2000) ao possibilitar a interpretação da distribuição a priori dos parâmetros através de razões de chances. O segundo modelo usufrui da mistura em escala em conjunto com a transformação proposta por \\Yeo e Johnson (2000) possibilitando que a curtose assim como a assimetria sejam ajustadas e um parâmetro informativo de assimetria seja estimado. Esta transformação é muito mais apropriada para lidar com valores negativos do que a transformação de Box e Cox (1964) utilizada por Guerrero e Johnson (1982) e é mais simples do que o modelo proposto por Stukel (1988). Por fim, o terceiro modelo é o mais geral entre todos e consiste em uma mistura de posição e escala tal que possa descrever curtose, assimetria e também bimodalidade. O modelo proposto por Newton et al. (1996), embora, seja bastante geral, não permite uma interpretação palpável da distribuição a priori para os pesquisadores da área aplicada. A avaliação dos modelos é realizada através de medidas de distância de probabilidade Cramér-von Mises, Kolmogorov-Smirnov e Anderson-Darling e também pelas Ordenadas Preditivas Condicionais. / This work proposes semi-parametric Bayesian models for binary data. The first model is a scale mixture that allows handling discrepancies related to kurtosis of Logistic model. It is a more interesting extension than has been proposed by Basu e Mukhopadyay (1998) because this model allows the interpretation of the prior distribution of parameters using odds ratios. The second model enjoys the scale mixture together with the scale transformation proposed by Yeo and Johnson (2000) modeling the kurtosis and the asymmetry such that a parameter of asymmetry is estimated. This transformation is more appropriate to deal with negative values than the transformation of Box e Cox (1964) used by Guerrero e Johnson (1982) and simpler than the model proposed by Stukel (1988). Finally, the third model is the most general among all and consists of a location-scale mixture that can describe kurtosis and skewness also bimodality. The model proposed by Newton et al (1996), although general, does not allow a tangible interpretation of the a priori distribution for reseachers of applied area. The evaluation of the models is performed through distance measurements of distribution of probabilities Cramer-von Mises Kolmogorov-Smirnov and Anderson-Darling and also the Conditional Predictive sorted.
3

Semi-parametric Bayesian Inference of Accelerated Life Test Using Dirichlet Process Mixture Model

Liu, Xi January 2015 (has links)
No description available.
4

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values

Hartmann, Marcelo 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
5

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values

Marcelo Hartmann 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
6

Régression de Cox avec partitions latentes issues du modèle de Potts

Martínez Vargas, Danae Mirel 07 1900 (has links)
No description available.

Page generated in 0.0794 seconds