• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 13
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 76
  • 76
  • 19
  • 17
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quasi-Static and Creep Behavior of Enhanced SIC/SIC Ceramic Matrix Composites

Pandey, Vinayak 17 July 2000 (has links)
Continuous Fiber Reinforced Ceramic Composites (CFCC's) are being currently investigated as potential materials for high temperature applications such as combustor liners in stationary gas turbines. The creep behavior of woven Enhanced SiC/SiC composites was studied at temperatures from 600 to 1200 °C and at 140 to 220 MPa stress levels. Most researchers studying the creep behavior of ceramic matrix composites (CMCs) use the time hardening model and rate equations for expressing the dependence of creep strain on time, temperature and stress. Such laws, although simple and easy to use, are inadequate to represent the creep behavior over a range of stress levels and temperatures and cannot be used to quantify the pest phenomenon commonly observed in CMCs. Hence, these laws were modified to include the pest phenomenon and an empirical equation was developed that can be used to represent the creep behavior at various stresses and temperatures. The modified equation was used in the finite element analysis and the results were compared with the time and strain hardening models. Microscopic observations on the fractured surfaces revealed the pseudo-ductile behavior of the material at high temperatures. A quasi-static test was conducted at 1200 °C to determine the unloading response of the material. The stress-strain response of the composite demonstrates a hysterisis loop and a small amount of permanent strain, which are characteristic of the CMC's [3]. Finally, a test was conducted at 1200 oC to investigate the recovery behavior of the material. The material exhibits a tendency to recover the accumulated creep strain as well as the small permanent strain upon unloading, if sufficient time is allowed for recovery. The creep data were also modeled using the representations such as Monkmon-Grant and Larsen-Miller equations. A modified Monkman-Grant equation was used to model the stratification of the creep strain rate data with temperature. A finite element model based on the plasticity theory was developed to simulate the quasi-static cyclic behavior of the material. Though the loading behavior of CMCs can be modeled using the bilinear or multilinear kinematic hardening plasticity models, the unloading behavior as predicted by the models is entirely different from the experimentally observed behavior. Hence, these models were modified to correctly predict the stress-strain behavior. The model, which was input via a user defined subroutine into the ANSYS finite element program uses the concept of state or internal variables to define the unloading portion of the stress-strain curve. The results were compared with the test data and they show very good agreement. The model was then used to predict the stress-strain response of a plate with a notch. The results from the analysis were compared with the experimental data and they show good agreement if average values of strains are considered. / Master of Science
12

A Case Study on the Impact of Web Flexibility on Quasi-Static and Dynamic Behavior of a Spur Gear Pair

McEwan, Robert A. January 2021 (has links)
No description available.
13

Shortening time-series power flow simulations for cost-benefit analysis of LV network operation with PV feed-in

López, Claudio David January 2015 (has links)
Time-series power flow simulations are consecutive power flow calculations on each time step of a set of load and generation profiles that represent the time horizon under which a network needs to be analyzed. These simulations are one of the fundamental tools to carry out cost-benefit analyses of grid planing and operation strategies in the presence of distributed energy resources, unfortunately, their execution time is quite substantial. In the specific case of cost-benefit analyses the execution time of time-series power flow simulations can easily become excessive, as typical time horizons are in the order of a year and different scenarios need to be compared, which results in time-series simulations that require a rather large number of individual power flow calculations. It is often the case that only a set of aggregated simulation outputs is required for assessing grid operation costs, examples of which are total network losses, power exchange through MV/LV substation transformers, and total power provision from PV generators. Exploring alternatives to running time-series power flow simulations with complete input data that can produce approximations of the required results with a level of accuracy that is suitable for cost-benefit analyses but that require less time to compute can thus be beneficial. This thesis explores and compares different methods for shortening time-series power flow simulations based on reducing the amount of input data and thus the required number of individual power flow calculations, and focuses its attention on two of them: one consists in reducing the time resolution of the input profiles through downsampling while the other consists in finding similar time steps in the input profiles through vector quantization and simulating them only once. The results show that considerable execution time reductions and sufficiently accurate results can be obtained with both methods, but vector quantization requires much less data to produce the same level of accuracy as downsampling. Vector quantization delivers a far superior trade-off between data reduction, time savings, and accuracy when the simulations consider voltage control or when more than one simulation with the same input data is required, as in such cases the data reduction process can be carried out only once. One disadvantage of this method is that it does not reproduce peak values in the result profiles with accuracy, which is due to the way downsampling disregards certain time steps in the input profiles and to the averaging effect vector quantization has on the them. This disadvantage makes the simulations shortened through these methods less precise, for example, for detecting voltage violations.
14

Quasi-static impact of foldcore sandwich panels

Gattas, Joseph M. January 2013 (has links)
This thesis considered the design of new and improved foldcore sandwich panels suitable for high-performance energy absorption applications. This was achieved by utilising origami geometry design techniques to alter foldcore structures such that they possessed different mechanical behaviours and failure modes. The major findings of this thesis were in three areas as follows. First, a modified planar foldcore geometry was developed by introducing sub-folds into a standard foldcore pattern. The new geometry, deemed the indented foldcore, successfully triggered a high-order failure mode known as a travelling hinge line failure mode. This was found to have a much higher energy absorption than the plate buckling failure mode seen in an unmodified foldcore structure. A comprehensive numerical, theoretical, and experimental analysis was conducted on the indented core, which included the development of a new foldcore prototyping method that utilised 3D printed moulds. It was shown that compared to available commercial honeycomb cores, the indented foldcore had an improved uniformity of energy absorption, but weaker overall peak and crushing stresses. Second, rigid origami design principles were used to develop extended foldcore geometries. New parametrisations were presented for three patterns, to complete a set of Miura-derivative geometries termed first-level derivatives. The first-level derivative parametrisations were then combined to create complex, piecewise geometries, with compatible faceted sandwich face geometry also developed. Finally, a method to generate rigid-foldable, curved-crease geometry from Miura-derivative straight-crease geometry was presented. All geometry was validated with physical prototypes and was compiled into a MATLAB Toolbox. Third, the performance of these extended foldcore geometries under impact loadings was investigated. An investigation of curved-crease foldcores showed that they were stronger than straight-crease foldcores, and at certain configurations can potentially match the strength, energy-absorption under quasi-static impact loads, and out-of-plane stiffness of a honeycomb core. A brief investigation of foldcores under low-velocity impact loadings showed that curved-crease foldcores, unlike straight-crease foldcores, strengthened under dynamic loadings, however not to the same extent as honeycomb. Finally, an investigation of single-curved foldcore sandwich shells was conducted. It was seen that foldcore shells could not match the energy-absorption capability of an over-expanded honeycomb shell, but certain core types did exhibit other attributes that might be exploitable with future research, including superior initial strength and superior uniformity of response.
15

Ply clustering effect on composite laminates under low-velocity impact using FEA

Liu, Hongquan 01 1900 (has links)
With the development of the design and manufacture technology, composite materials are widely used in the aeronautical industry. But, one of the main concerns which affects the application of composites is foreign object impact. The damages induced by the Low Velocity Impact (LVI), which can significantly reduce the strength of the structures, can’t be easily inspected routinely. The so-called Barely Visible Impact Damages (BVID) due to LVI typically includes interlaminar delamination, matrix cracks and fibre fracture at the back face. Previous researches have shown that the results of LVI test are similar to that of the Quasi-Static Load (QSL) test. The initiation and propagation of delamination can be detected more easily in the QSL test and the displacement and reaction force of the impactor can be controlled and measured much more accurately. Moreover, it is easier to model QSL tests than dynamic impacts. To investigate the impact damage induced by LVI, a Finite Element (FE) model employing cohesive elements was used. At the same time, the ply clustering effect, when several plies of the same orientation were stack together, was modelled in the FE model in terms of damage resistance and damage size. A bilinear traction-separation law was introduced in the cohesive elements employed to simulate the initiation and propagation of the impact damage and delamination. Firstly, a 2D FE model of the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens were built using the commercial FEM software ABAQUS. The results have shown that the cohesive elements can be used to simulate mode I and mode II delamination sufficiently and correctly. Secondly, an FE model of a composite plate under QSL but without simulating damage was built using the continuum shell elements. Agreement between the FEA results with published test results is good enough to validate the capability of continuum shell elements and cohesive elements in modelling the composite laminate under the transverse load condition (QSL). Thirdly, an FE model containing discrete interface delamination and matrix cracks at the back face of the composite plate was built by pre-setting the cohesive failure elements at potential damage locations according to the experimental observation. A cross-ply laminate was modelled first where fewer interfaces could be delaminated. Good agreement was found in terms of the delamination area and impactor’s displacement-force curve. Finally, the effect of ply clustering on impact damage resistance was studied using Quasi-Isotropic (QI) layup laminates. Because of the limited time available for calculation, the simulation was only partly completed for the quasi-isotropic laminates (L2 configuration) which have more delaminated interfaces. The results showed that cohesive elements obeying the bilinear traction-separation law were capable of predicting the reaction force in quasi-isotropic laminates. However, discrepancies with the test results in terms of delamination area were observed for quasi-isotropic laminates. These discrepancies are mainly attributed to the simplification of matrix cracks simulation and compressive load at the interface in the thickness direction which is not taken into account.
16

On the crushing of honeycomb under axial compression

Wilbert, Adrien 15 February 2011 (has links)
This thesis presents a comprehensive study of the compressive response of hexagonal honeycomb panels from the initial elastic regime to a fully crushed state. Expanded aluminum alloy honeycomb panels with a cell size of 0.375 in (9.53 mm), a relative density of 0.026, and a height of 0.625 in (15.9 mm) are laterally compressed quasi statically between rigid platens under displacement control. The cells buckle elastically and collapse at a higher stress due to inelastic action. Deformation then first localizes at mid-height and the cells crush by progressive formation of folds; associated with each fold family is a stress undulation. The response densifies when the whole panel height is consumed by folds. The buckling, collapse, and crushing events are simulated numerically using finite element models involving periodic domains of a single or several characteristic cells. The models idealize the microstructure as hexagonal, with double walls in one direction. The nonlinear behavior is initiated by elastic buckling while inelastic collapse that leads to the localization observed in the experiments occurs at a significantly higher load. The collapse stress is found to be mildly sensitive to various problem imperfections. For the particular honeycomb studied, the collapse stress is 67% higher than the buckling stress. It was also shown that all aspects of the compressive behavior can be reproduced numerically using periodic domains with a fine mesh capable of capturing the complexity of the folds. The calculated buckling stress is reduced when considering periodic square domains as the compatibility of the buckles between neighboring cells tends to make the structure more compliant. The mode consisting of three half waves is observed in every simulation but its amplitude is seen to be accented at the center of the domains. The calculated crushing response is shown to better resemble measured ones when a 4x4 cell domain is used, which is smoother and reproduces decays in the amplitude of load peaks. However, the average crushing stress can be captured with engineering accuracy even from a single cell domain. / text
17

Caractérisation et modélisation de la fiabilité des transistors MOS en Radio Fréquence / Radio-Frequency Reliability Characterization and modeling of MOS transistor

Negre, Laurent 14 December 2011 (has links)
Les produits issus des technologies Silicium tendent à exploiter au maximum les performancesdes transistors MOS tout en les soumettant à des profils de mission très agressifs du point de vuede la fiabilité. Les concepteurs sont ainsi à la recherche du meilleur compromis entre performanceet fiabilité.Historiquement, l’étude de la fiabilité du transistor MOS et le développement des modèlessous jacents ont été menés sur la base de contrainte de vieillissement statique. Avec le développementdes produits à hautes performances dans le domaine de la radiofréquence (RF), laquestion de la fiabilité pour ce type d’application se pose. Ainsi, une extension des modèles defiabilité doit être réalisée afin de quantifier le vieillissement des paramètres clés RF soumis àdes contraintes statiques mais également RF. C’est cette extension de la fiabilité des transistorsMOS dans le domaine RF qui constitue le sujet de ce travail de thèse.Dans ce manuscrit, le fonctionnement du transistor MOS est décrit et sa fiabilité est introduite.Les différents mécanismes de dégradation sont étudiés et leurs modèles associés décrits.Sont ensuite présentés un banc de mesure et une méthodologie nécessaire à l’étude du vieillissementdes transistors dans le domaine RF, ainsi qu’à l’extension des modèles de fiabilité audomaine RF. / Products using nowadays silicon technology are generally targeting aggressive specificationsand push the developers to determine the best compromise between performance and reliability.Main front-end degradation mechanisms are historically studied and modeled under static stressconditions and focus on the static MOS transistor parameters.With the development of product targeting high performances in the radio frequency (RF)domain, the reliability is becoming a first order concern. Thus an extension of the actual staticreliability models must be done to quantify the aging of key RF parameters under static andRF stress. In this context, this work focuses on the extension of the MOS transistor reliabilityregarding the study of RF parameters and also the application of RF stress.After describing the MOS transistor properties, the reliability aspect is introduced and theemphasis is put on the different degradation mechanisms and their associated models. Thisallows the development of an experimental setup and the required methodology to investigatethe device aging in the RF domain and to extend actual static models.
18

Accurate RTA-Based Non-Quasi-Static Compact MOSFET Model for RF and Mixed-Signal Simulations

January 2012 (has links)
abstract: The non-quasi-static (NQS) description of device behavior is useful in fast switching and high frequency circuit applications. Hence, it is necessary to develop a fast and accurate compact NQS model for both large-signal and small-signal simulations. A new relaxation-time-approximation based NQS MOSFET model, consistent between transient and small-signal simulations, has been developed for surface-potential-based MOSFET compact models. The new model is valid for all regions of operation and is compatible with, and at low frequencies recovers, the quasi-static (QS) description of the MOSFET. The model is implemented in two widely used circuit simulators and tested for speed and convergence. It is verified by comparison with technology computer aided design (TCAD) simulations and experimental data, and by application of a recently developed benchmark test for NQS MOSFET models. In addition, a new and simple technique to characterize NQS and gate resistance, Rgate, MOS model parameters from measured data has been presented. In the process of experimental model verification, the effects of bulk resistance on MOSFET characteristics is investigated both theoretically and experimentally to separate it from the NQS effects. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
19

Analysis of transverse cracking in cross-ply laminates: Weibull distribution based approach

Pakkam Gabriel, Vivek Richards January 2022 (has links)
Fiber reinforced polymer composite laminates make up more than 50% of modern aircrafts. Such composite laminates are exposed to various environmental and in-service thermo-mechanical load conditions. Transverse/intralaminar cracking is usually the first form of damage appears in a composite laminate and they tend to increase in number during the service life. The growth in number of these cracks significantly degrades the thermo-elastic properties of the composite laminate and eventually leads to final failure. Thus, it is important to predict the crack density (number of cracks per unit length) growth in both non-interactive crack density region and interactive crack density region and its effect in thermo-elastic properties degradation. Non-interactive crack density region is the region where the cracks are far apart and stress perturbation between cracks do not overlap. Interactive crack density region is where the cracks are close to each other and stress perturbation between cracks overlaps and affects the formation of new cracks. In this study, transverse cracks in thick Glass Fiber Epoxy (GF/EP) cross-ply composite laminates under quasi-static tensile loading and tension-tension fatigue loading have been analyzed and predicted. In the first paper attached here, increase in number of transverse cracks in GF/EP cross-ply laminates under quasi-static tensile loading at room temperature (RT) are analyzed using 2 material systems. The failure stress distribution in 90° plies of the laminates is defined by Weibull distribution and the Weibull parameters are determined from crack density versus applied thermo-mechanical transverse stress in 90° layer (σTCLT) data points within the non-interactive crack density region. The crack density growth is then predicted versus the σTCLT and applied mechanical strain in the laminate from the determined Weibull parameters using Monte Carlo method and the stress distribution models between adjacent cracks. The predicted results using the novel stress distribution model introduced here were in good agreement with the non-interactive and interactive crack density regions of test results. The importance of using the Monte Carlo method and novel stress distribution model to predict the whole crack density region have been emphasized in the article, in addition to that it also redefined the interval of non-interactive crack density region.  The second paper expands the concept from the first paper, to address the tension-tension fatigue loading at RT. It deals with the crack density analysis and prediction in [0/90]s GF/EP laminate under fatigue loading at RT. The fatigue tests were performed at 3 maximum stress levels. Here the Weibull parameters were determined from the data points within the non-interactive crack density region in quasi-static and fatigue loading. From the determined Weibull parameters of each stress level and using Monte Carlo method and the novel stress distribution model, the crack density versus the number of fatigue cycles were predicted and in good agreement with the fatigue test results at the respective stress level. The intention here was to use Weibull parameters of one stress level to predict crack density at arbitrary stress levels. Based on it, the predicted results were not sufficiently good and suggested to revisit the Weibull parameter determination by performing fatigue tests at two stress levels.  In the attached paper 3, new methodology on crack density growth simulation and Weibull parameter determination in tension-tension fatigue loading has been developed. In the newly developed methodology, in detailed fatigue tests are performed at one maximum stress level to obtain all data points and at higher stress level to obtain one data point that is a crack density data point at certain number of cycles to determine Weibull parameters. Using the determined Weibull parameters from non-interactive crack density region, the whole crack density region was successfully predicted for other stress levels.
20

Axial Collapse of Thin-Walled, Multi-Corner Single- and Multi-Cell Tubes

Najafi, Ali 08 August 2009 (has links)
Nonlinear explicit finite element (FE) simulations are used to study the axial collapse behavior of multi-corner. single- and multi-cell crush tubes under quasi-static and dynamic loading conditions. It is shown that the higher hardening modulus and yield stress increases the crush force and its resulting energy absorption. Moreover, the multi-cell tubes are found to have complicated collapse modes because of the geometrical complexity of the corner region unlike single-cell tubes. it was also shown that the stress wave propagation has a significant effect on the formation of crush modes in the tubes without imperfections whereas this effect can be ignored in tubes with imperfection or trigger mechanism. An analytical formula for the prediction of mean crush force of multi-corner multi-cell tubes is derived based on the super folding element theory. The analytical predictions for the mean crush force are found to be in good agreement with the FE solutions. Results also show a strong correlation between the cross-sectional geometry and the crash behavior with the method of connecting the inner to the outer walls having large influence on the energy absorption.

Page generated in 0.1422 seconds