• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 67
  • 41
  • 20
  • 19
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 390
  • 390
  • 390
  • 92
  • 64
  • 58
  • 58
  • 49
  • 49
  • 48
  • 46
  • 46
  • 45
  • 42
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Efeitos da poluição atmosférica na área do Aeroporto Internacional de São Paulo - Guarulhos sobre ensaio de bioindicadores vegetais / Effects of the air pollution in the São Paulo International Airport - Guarulhos area on a vegetable bioindicators assay

Rocco Junior, José 16 March 2009 (has links)
O presente estudo justifica-se pelo crescente aumento da economia e conseqüentemente dos diferentes tipos de transportes para viabilizar esta economia, a exemplo do transporte aéreo que vem crescendo significativamente. Este estudo objetivou verificar um possível efeito mutagênico causado pelo combustível de aeronaves em bioindicadores vegetais As áreas selecionadas para esta pesquisa foram o Aeroporto Internacional de São Paulo (pontos: torre, pátio, pista L e pista R), um bairro adjacente que é rota de aeronaves e o Parque Estadual da Cantareira que dista 16km do aeroporto. O aeroporto situa-se a 749m de altitude com ventos médios de 129 graus e velocidade média de cinco nós, temperatura média de 19 graus centígrados e umidade relativa do ar média de 80 por cento. Um bioindicador vegetal proposto foi a Tradescantia pallida, com 15 floreiras em cada ponto mencionado, analisando o potencial mutagênico através dos números de micronúcleos (Trad-MCN) e metais pesados impregnados nas folhas da planta, sendo coletadas as inflorescências e folhas mensalmente durante um ano e meio. Para caracterizar a área de estudo foi analisado o material particulado presente nos diversos pontos, utilizou-se amostradores mini-vol, com exposição por 24 horas em sete coletas durante um ano. Para verificar os compostos orgânicos voláteis (COVs), foram feitas três coletas através de canisters. As maiores concentrações de gases provenientes da queima do querosene foram encontradas nos pontos: pátio, pista L e bairro. Os resultados indicaram uma correlação positiva (p=0,034) entre COVs e MCN, no local de maior concentração (pátio, indicando que os compostos orgânicos voláteis provenientes de combustível de aeronaves (QAV) apresentaram componentes capazes de causar mutagenicidade em nosso estudo. / The worthiness of this study lies on the fact that, within the scenario of the multiplication of various kinds of transportation means resulting from the economical development, the growing use of air transportation means has been quite significant. The aim of this study was to verify a mutagenic potential effects caused by aircraft fuel on a vegetable indicator. The locations selected to carry out this research are the São Paulo International Airport Guarulhos (points: tower, apron, runway L and runway R), an adjoining district which lies within the route of the aircrafts, and Parque Estadual da Cantareira (a public park), 16 km away from the airport and apparently not impacted by the aircraft traffic (reference point). The airport lies at an altitude of 749 meters, with average winds of 129 degrees and average speed of five knots, average temperature of 19 degrees centigrade and air relative humidity of 80 per cent. The vegetal bioindicator propos, the Tradescantia pallida, with 15 flowerbeds placed in each of the locations mentioned above, which were used for the observation of the mutagenic potential through the analysis of the amounts of micronuclei (Trad-MCN) and heavy metals accumulated on the leaves. The inflorescences and leaves were collected on monthly basis within a period of eighteen months. For to characterize the study area was analyzed the particulate material in the various locations, using mini-vol sample collectors, with 24 hour exposure through a one year period. For the analysis of the volatile organic compounds (VOCs), three collections were made with the use of canisters. The greatest concentrations of gases resulting from the burning of kerosene were found on the locations: apron, runway L and district. The result showed a positive correlation (p=0,034) between the VOCs and micronuclei in the location with greatest concentration (apron) indicating that the organic compounds from aircraft fuel (AVK) have mutagenic able components.
192

PREFERENTIAL PATHWAYS FOR VAPOR INTRUSION: SITE SCREENING AND FIELD SAMPLING OF SEWERS TO ASSESS INHALATION EXPOSURE RISKS

Willett, Evan James 01 January 2018 (has links)
Hazardous waste sites and aging wastewater infrastructure are common in the United States. There are hundreds of thousands of contaminated sites and more than a million miles of sewer pipes. Populations living close to hazardous waste sites often suffer from increased risk of adverse health effects due to exposure to contaminated environmental media. Vapor intrusion is one process by which nearby populations can be exposed to volatile organic compounds (VOCs). Aging wastewater infrastructure is important for vapor intrusion site assessments because sewer pipes can serve as preferential vapor transport pathways. Near contaminated sites, pipe deterioration allows migration of contaminants into sewers and potential accumulation of chemical vapors in sewer gas and nearby buildings. The objectives of this study are to develop a screening-level method to identify contaminated sites where additional evaluation of vapor intrusion is necessary, and then conduct field sampling at these sites to investigate sewers as potential vapor intrusion pathways. Sampling was conducted at four study sites, which consist of former and current dry cleaning facilities located in Lexington, Kentucky. The results of this study demonstrate that preferential vapor intrusion pathways such as sewers can facilitate the spread of vapor intrusion exposure risks beyond source areas of contamination.
193

Interspecific variation in leaf-level biogenic emissions of the Bambuseae

Melnychenko, Andrea Natalie 28 June 2013 (has links)
Plants emit a diverse range of biogenic volatile organic compounds (BVOCs) into the atmosphere, of which isoprene is the most abundantly emitted. Isoprene significantly affects biological and atmospheric processes, but the range of isoprene and BVOCs present in bamboos has not been well characterized. In this thesis I explore the range of isoprene emission found in bamboos and relate it to plant morphological and physiological characteristics. In addition, I measure and relate the entire suite of BVOCs present in the bamboos to their fundamental isoprene emission rate. Interspecific variation in isoprene emission documented in a comprehensive survey of bamboos. Two groups of bamboo species were measured in the greenhouse and the field. Elevated photosynthetic rate was significantly correlated with isoprene emission. In the field, dark respiration rate was highest in bamboos that made the least amount of isoprene. The total BVOC suite was significantly influenced by whether or not leaf-level isoprene emission was present. I conclude that bamboos vary with regard to physiology, morphology, and total BVOC suite and that isoprene emission is correlated with these changes, and introduce the bamboos as a novel system for studying the impacts of isoprene emission.
194

Purification de l'air des cabines aéronautiques : Élaboration d'adsorbants innovants et compréhension de leurs comportements à des teneurs en composés organiques volatils sub-ppm / Purification of the air of the aeronautical cabins : Elaboration of innovative adsorbents and understanding of their behaviors at sub-ppm concentrations of volatile organic compounds

Chevalier, Vincent 07 December 2018 (has links)
L’avion est un mode de transport en forte croissance qui n’échappe pas aux exigences d’un public de plus en plus sensibilisé à la pollution de l’air intérieur. De plus, l’arrivée de futurs réglementations limitants la concentration des COVs (Composés Organiques Volatils) dans les cabines aéronautiques nécessite de développer des solutions innovantes de traitement de l’air dont la compacité et la consommation énergétique soient compatibles avec les contraintes du secteur. Au vu de ces contraintes, l’adsorption est le procédé le plus approprié. Le charbon actif est le matériau le plus utilisé en tant qu'adsorbant en dépit de certaines limitations, notamment vis-à-vis de sa sélectivité et de sa régénération.L’objectif de cette thèse est d’améliorer la compréhension des phénomènes d’adsorption des polluants faiblement concentrés et d’étudier des matériaux alternatifs au charbon actif via l’élaboration et la fonctionnalisation d’adsorbants. Cinq matériaux (charbon actif, zéolithe, silice mésoporeuse et Metal-Organic Frameworks) possédant des propriétés chimiques (polarité, présence de cations, etc) et physiques (surface spécifique, taille des pores, etc) variées ont été testés sur un banc fabriqué dans le cadre de cette thèse dans des conditions de concentration sub-ppm. Les interactions (adsorption/désorption) entre ces matériaux et cinq polluants chimiques représentatifs des grandes familles de polluants de la qualité de l’air intérieur ont été étudiées dans des conditions variées (mélange mono-polluant, multi-polluant, humidité, etc). Enfin, une attention plus particulière a été apportée à l’adsorption de l’acétaldéhyde qui est très peu capté par les adsorbants usuels, au travers de l’élaboration de silices mésoporeuses et de zéolithes fonctionnalisées pour réagir spécifiquement avec ce polluant. / Aircraft is a means transport in strong growth which does not escape the requirements of a public more and more sensitized with indoor air quality. In addition, the arrival of future regulations limiting the concentration of VOCs (Volatile Organic Compounds) in aircraft cabins requires the development of innovative air treatment solutions the compactness and energy consumption are compatible with the constraints of the sector. In view of these constraints, adsorption is the most appropriate method. Activated carbon is the most used material as an absorbent despite some limitations, especially with regard to its selectivity and regeneration.The aim of this work is to improve the understanding of adsorption phenomena at low concentration pollutants and to study alternative materials to activated carbon via the development and functionalization of adsorbents. Five materials (activated carbon, zeolite, mesoporous silica and Metal-Organic Frameworks) with varied chemical properties (polarity, presence of cations, etc.) and physical properties (specific surface area, pore size, etc.) were tested on a bench made during the present work under sub-ppm concentration conditions. The interactions (adsorption / desorption) between these materials and five chemical pollutants representative of the major families of indoor air quality pollutants have been studied under various conditions (mono-pollutant mixture, multi-pollutant, moisture, etc.). Finally, particular attention has been given to the adsorption of acetaldehyde, which is very poorly adsorbed by the usual adsorbents, through the synthesis of mesoporous silicas and functionalized zeolites to react specifically with this pollutant.
195

Etude des performances de matériaux hybrides MOFs pour le captage de COVs / Probing the performances of MOFs for VOCs recovery

Planchais, Arnaud 12 December 2014 (has links)
Ce travail est une contribution à la compréhension des performances de matériaux hybrides poreux de type MOFs pour le captage de benzène, dans le cadre de la lutte contre les émissions de Composés Organiques Volatils (COVs) à partir de procédés basés sur l'adsorption d'effluents gazeux. Dans ce but, nous avons couplé diverses techniques expérimentales (spectroscopie d'impédance complexe, diffraction des rayons X, manométrie d'adsorption, …) à des simulations moléculaires (calculs basés sur la Théorie de la Fonctionnelle de la Densité, Monte Carlo ou Dynamique Moléculaire) pour étudier ces matériaux en termes de capacité et de mécanisme d'adsorption. Différentes familles de MOFs ont été sélectionnées afin d'analyser l'impact de diverses caractéristiques de ces matériaux, comme la flexibilité du réseau, la présence de cations extra-réseau et la nature chimique des ligands organiques, sur leurs propriétés d'adsorption de benzène. Par ailleurs, l'eau étant souvent considérée comme un facteur limitant lors de l'adsorption sélective d'une espèce à partir d'effluents gazeux chargés d'humidité, nous avons également envisagé l'étude de cet adsorbat seul, avant d'explorer la co-adsorption de mélanges benzène/eau dans des proportions différentes. Une rationalisation des données nous a permis de conclure que certains des matériaux explorés présentent une sélectivité benzène/eau intéressante pour envisager leur utilisation potentielle dans le cadre du captage de traces. / The Metal Organic Frameworks (MOFs), a recent class of hybrid porous solids, appears as valuable candidates for various applications related to their sorption abilities. The optimization of their performances requires a control of the parameters that govern the adsorption process, including the confined species/MOF interactions and the synergic dynamics of the system. In this context, experimental tools (Complex Impedance Spectroscopy, X Ray Diffraction, volumetric adsorption…) were combined with molecular simulations (Density Functional Theory, Monte Carlo and Molecular Dynamics calculations) to explore the benzene adsorption of MOFs in terms of capacity and microscopic mechanism. Different series of MOFs were selected to address the impact of various features, including the lattice flexibility, the presence of extra-framework cations and the ligand functionalization, on their adsorption performances. Benzene and water were considered as adsorbents separately, before exploring the co-adsorption of various benzene/water mixtures. The rationalization of the data allowed us to understand why some of the selected solids, showing interesting benzene/water selectivity, are likely to be used for the capture of benzene traces in humid conditions.
196

Film Formation of Water-borne Polymer Dispersion: Designed Polymer Diffusion for High Performance Low VOC Emission Coatings

Soleimani Kheibari, Mohsen 31 August 2012 (has links)
In this thesis, I describe experiments that were designed to provide a better understanding of polymer diffusion during latex film formation. This step leads to the improvement of film mechanical properties. Polymer diffusion in these films was monitored by fluorescence resonance energy transfer. Current paint formulations contain Volatile Organic Compounds (VOCs) as plasticizers to facilitate polymer diffusion. The drawback of this technology is the release of VOCs to the atmosphere. VOCs are deleterious to the environment and contribute to smog and ground level ozone formation. The propensity of water, an indispensible part of any latex dispersion, to promote polymer diffusion was studied. Copolymers of poly (butyl acrylate-co-methyl methacrylate) and poly(ethylhexyl acrylate-co-tertiary butyl methacrylate) with similar glass transition temperatures but different hydrophobicity were compared. Polymer diffusion was monitored for films aged at different relative humidities. Water absorbed by the hydrophobic copolymer film was less efficient in promoting polymer diffusion than in the hydrophilic polymer. Only the fraction of water which is molecularly dissolved in the film participate actively in plasticization. Although water has low solubility in most latex polymers, molecularly dissolved water is more efficient than many traditional plasticizers. The possibility of modifying film formation behavior of acrylic dispersions with oligomers was studied by synthesizing hybrid polymer particles consisting of a high molecular weigh (high-M) polymer and an oligomer with the same composition. Oligomers with lower molecular weight are more efficient as diffusion promoters and have less deleterious effect on high-M polymer viscosity. A different set of hybrid particles were prepared in which the oligomer contained methacrylic acid units. The composition of the oligomer was tuned to be miscible with the high-M polymer when the acid groups were protonated but to phase separate when the acid groups were deprotonated. At basic pH, these particles adopt a core-shell morphology, with a shell rich in neutralized oligomers. After film formation, the oligomer shell retarded polymer diffusion. This retardation is expected to expand the time window during which the paint surface can be altered without leaving brush marks (open time). Short open time is a pressing problem in current technology.
197

Film Formation of Water-borne Polymer Dispersion: Designed Polymer Diffusion for High Performance Low VOC Emission Coatings

Soleimani Kheibari, Mohsen 31 August 2012 (has links)
In this thesis, I describe experiments that were designed to provide a better understanding of polymer diffusion during latex film formation. This step leads to the improvement of film mechanical properties. Polymer diffusion in these films was monitored by fluorescence resonance energy transfer. Current paint formulations contain Volatile Organic Compounds (VOCs) as plasticizers to facilitate polymer diffusion. The drawback of this technology is the release of VOCs to the atmosphere. VOCs are deleterious to the environment and contribute to smog and ground level ozone formation. The propensity of water, an indispensible part of any latex dispersion, to promote polymer diffusion was studied. Copolymers of poly (butyl acrylate-co-methyl methacrylate) and poly(ethylhexyl acrylate-co-tertiary butyl methacrylate) with similar glass transition temperatures but different hydrophobicity were compared. Polymer diffusion was monitored for films aged at different relative humidities. Water absorbed by the hydrophobic copolymer film was less efficient in promoting polymer diffusion than in the hydrophilic polymer. Only the fraction of water which is molecularly dissolved in the film participate actively in plasticization. Although water has low solubility in most latex polymers, molecularly dissolved water is more efficient than many traditional plasticizers. The possibility of modifying film formation behavior of acrylic dispersions with oligomers was studied by synthesizing hybrid polymer particles consisting of a high molecular weigh (high-M) polymer and an oligomer with the same composition. Oligomers with lower molecular weight are more efficient as diffusion promoters and have less deleterious effect on high-M polymer viscosity. A different set of hybrid particles were prepared in which the oligomer contained methacrylic acid units. The composition of the oligomer was tuned to be miscible with the high-M polymer when the acid groups were protonated but to phase separate when the acid groups were deprotonated. At basic pH, these particles adopt a core-shell morphology, with a shell rich in neutralized oligomers. After film formation, the oligomer shell retarded polymer diffusion. This retardation is expected to expand the time window during which the paint surface can be altered without leaving brush marks (open time). Short open time is a pressing problem in current technology.
198

Kinetic Study on Degradation of Gas-phase 1, 3-Butadiene and Propylene Glycol Monomethyl Ether Acetate (PGMEA) by UV/O3

Huang, Bo-Jen 24 October 2005 (has links)
This study investigates the rate kinetics for BD and PGMEA oxidation by UV/O3 process. The reactor constructs of a 100 cm x 20 cm x 85 cm (L x W x H) stainless steel chamber, in which four vertical steel plates (20 cm x 65 cm, W x H) were inserted to establish a plug flow path for the flowing gas. The reactor has a total effective volume of 170 L. Each of the five compartments of the reactor is equipped with an individual UV irradiation system with a 3.0-cm x 15-cm (ID x L) quartz sheath that housed an UV lamp, and two electric UV power inputs of 0.147 or 0.294 W/L were obtained. The gas flows perpendicularly to the UV lamps in the reactor. The influent tested VOC concentration was adjusted to about 50 ppm, and the gas flows were controlled at the individual flow rate of 60 and 120 L/min. The effects of moisture content (relative humidity, RH), ozone dosage (initial molar ratio of ozone to the tested VOC, m) and UV volumetric electric power input on the removal of the tested VOCs are investigated in the study. Also, kinetic models of the tested VOCs by photolysis, ozonation and UV/O3 have been developed and confirmed with reference to the experimental data. According to the kinetic models, both photolysis rate and oxidation rate by UV/O3 are following the first order behavior with respect to the tested VOC concentrations which are low. The result reveals the absorbance for the reactions is weak absorbance under UV irradiation. The reaction rates are proportional to the UV electric power inputs in UV-initiated reactions. And the parameter, £i, which represents the ratio of OH radical consumption rate by the tested VOC to the total OH radical consumption rate, can be obtained by simulating the performance of experimental data of OH reactions. The experimental results reveal that for BD oxidation with a gas space time of 85 sec and RH = 40 ¡V 99%, BD photolysis did not occur at wavelength of 185 nm with UV electric power inputs of 0.147 and 0.294 W/L. The ozonation efficiency of BD reached 90% at m = 3.5, and RH had no influence on the removal efficiency of BD. The removal efficiencies by UV/O3 process reached 90% with m = 2.2 and 1.6 for UV power inputs of 0.147 and 0.294 W/L, respectively. The addition of ozone apparently encouraged BD removal efficiency by UV/O3 process. And the enhancement of ozone dosage (m = 0.5 ¡V 4.4) would promote the decomposition of BD more effectively than the enhancements of UV power input (from 0.147 to 0.294 W L-1) and RH (from 40 to 99%). For PGMEA photolysis in a batch reactor with volume of 1.188 L, the photolysis occurred at wavelength of 185 nm under UV irradiation. And the photolysis rate follows the first order behavior with respect to the concentration of PGMEA. But PGMEA photolysis did not occurred at UV wavelength of 254 nm. PGMEA ozonation was performed in the same batch reactor; and the removal efficiency of only 50% at m = 3.96 would take 35 min. So, PGMEA ozonation in the plug flow reactor did not be observed at the conditions of the gas space time of 85 sec and RH = 15 ¡V 99%. Besides, the photolysis of PGMEA was carried out at the above conditions. The removal efficiency of PGMEA by UV/O3 could reach 90% at the conditions of the gas space time of 170 sec, UV volumetric electric power input of 0.294 W/L and m = 2.9. And the enhancement of UV power input (from 0.147 to 0.294 W L-1) would promote the decomposition of PGMEA more effectively than the addition of ozone dosage (m = 1.05 ¡V 15.63) and RH = 15 ¡V 99%.
199

Study on the Biological Treatment of Air-borne VOCs by Sieve-plate Absorption Tower Combined with Activated Sludge Aeration Tank

Chang, Hsiao-Yu 24 October 2005 (has links)
Bioprocesses for air pollution control can generally be categorized as bioscrubber, biofilter, and biotrickling filter systems. These processes have been proven to be economical and effective for control of volatile organic compounds (VOCs) with concentrations of <1,000 mg C m-3 in gas streams. First, an activated sludge aeration tank (W x L x H = 40 x 40 x 300 cm) with a set of 2 mm orifice air spargers was utilized to treat gas-borne VOCs (toluene, p-xylene, and dichloromethane) in air streams. The effects of liquid depth (Z), aeration intensity (G/A), the overall mass transfer rate of oxygen in clean water (KLaO2), the Henry¡¦s law constant of the tested VOC (H), and the influent gaseous VOC concentration (C0) on the efficiency of removal of VOCs were examined and compared with a literature-cited model. Results show that the measured VOC removal efficiencies and those predicted by the model were comparable at a G/A of 3.75 ¡V 11.25 m3 m-2 hr-1 and C0 of around 1,000 ¡V 6,000 mg m-3. Experimental data also indicate that the designed gas treatment reactor with KLaO2 = 5 ¡V 15 hr-1, could achieve > 85% removal of VOCs with H = 0.24 ¡V 0.25 at an aerated liquid depth of 1 m, and > 95% removal of dichloromethane with H = 0.13 at a 1 m liquid depth. The model predicts that, for gas treatment in common activated sludge tanks, with KLaO2 = 5 ¡V 10 hr-1, depth = 3 ¡V 4.5 m, G/A = 9 ¡V 18 m3 m-2 hr-1, > 92% VOC removal can be achieved with operating parameters of Z of 3.0 m and KLaVOC/(G/A) of about 0.28 m-1, for VOCs with H < 0.3, such as most oxygen-containing hydrocarbons with low molecular weights, and benzene, toluene, ethylbenzene, and dichloromethane. Second, an activated sludge aeration tank and a sieve-plate column with six sieve plates were utilized to treat gas-borne VOCs in air streams. The tank was used for the biodegradation of the absorbed VOCs from the column which utilized the activated mixed liquor drawn from the tank as a scrubbing liquor. This research proposed a model for VOC absorption to a down-flow activated sludge liquor in a sieve-plate column. The experimental setup consisted of a pilot-scale activated-sludge tank and a sieve-plate tower, as demonstrated. The sieve-plate tower was constructed from a 25 x 25 x 162 cm (W x L x H) acrylic column with six custom-made sieve plates. Each plate has 382 holes which are 3 mm in diameter arranged on a square pitch. The holes give an open area of 3.82% of the whole plate area for gas flow. Two 25 mm-i.d. down-comer pipes were also equipped to allow for the downflow of the activated sludge liquor. Ports were provided at the column inlet, outlet, and each plate for gas and liquid sampling. Experiments were conducted and the model verified based on the results of tests on the removal efficiencies of isopropyl alcohol (IPA), toluene and p-xylene in the system operated at a range of influent VOC concentrations, air application rates, and liquid/gas flow ratios (L/G). The model developed by a material balance for the gaseous- and liquid-VOC over each plate of the column was developed and experimentally verified in this study. Superficial gas velocity over the column plate (U), number of plates (N), volumetric liquid-phase VOC-transfer coefficient (KLaVOC), aerated liquid depth over the plate (Z), volumetric liquid/gas flow-rate ratio (L/G), dimensionless Henry¡¦s law coefficient of the VOC to be absorbed (H), VOC content of the influent scrubbing liquor (xN+1), and the biodegradation rate constant of the VOC in the activated sludge mixed liquor (k) are among the affecting parameters to the effectiveness of the VOC removal. Model application by the model for effects of affecting parameters on the VOC removal effectiveness indicates that L/G, plate number N, biodegradation rate constant k, Henry¡¦s law constant of VOC H are among the important ones. A L/GH of greater than 2 and N of around 6 are enough for the effective (>90%) removal of the influent VOCs with H < 0.01 if no biodegradation occurred in the column. However, a N of over 16 is required for the influent VOCs with H of around 0.2. Biodegradation with a rate constant of around 100 hr-1 in the column greatly improves the column performance.
200

Spatial Distribution Of Organic Pollutants In Bursa Atmosphere: Seasonality And Health Effects

Yilmaz Civan, Mihriban 01 March 2010 (has links) (PDF)
The assessment of volatile organic compounds (VOCs) has become an area of particular interest in the field of atmospheric pollution due to their adverse health and environmental effects. This study is aimed to identify, quantify and characterize VOC in different urban areas and industrial areas in Bursa. The spatial distribution, seasonal variation as well as health risks assessment of VOC were discussed. Air samples were collected by means of sorbent passive sampling at over 50 sampling points in Bursa and analyzed by GC-thermal desorption. A total of seven weekly measurement periods were completed across the city center from 2005 to 2007. The source of VOC was apportioned with the commonly used receptor model, namely Factor Analysis. Motor vehicles and industrial solvent usage are the most abundant VOC sources to contribute to urban atmosphere in Bursa, 63% and 20%, respectively. The health risks of VOC were also evaluated. The questionnaire was filled out by selected people living in Bursa to obtain time-activity pattern for health risk assessment. Lifetime cancer risks were estimated with the measured VOC data. All the statistical parameters used to represent cancer risks for the selected compounds exceeded the stated level. Benzene had the highest adverse health effect among these compounds according to USEPA (2009) calculation with the mean cancer risk 3x10-4. In addition to intensive field sampling campaigns conducted in Bursa, the VOC measurement were completed for a period of six months to evaluate uptake rate of VOC in Ankara. Uptake rate equations depending on relative humidity and wind speed were developed for 25 VOCs.

Page generated in 0.1006 seconds