• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 37
  • 24
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[en] OPTIMAL HYDROTHERMAL OPERATION: THE CASE WITH HYDRO PLANTS DISPOSED IN PARALLEL / [es] OPERACIÓN ÓPTIMA DE UN SISTEMA HIDROTÉRMICO EL CASO DE HIDROELÉCTRICAS EN PARALELO / [pt] OPERAÇÃO ÓTIMA DE UM SISTEMA HIDROTÉRMICO: O CASO DE HIDRELÉTRICAS EM PARALELO

PAULA VARELLA CALUX LOPES 29 October 2001 (has links)
[pt] Neste trabalho estudamos o problema de planejamento hidrotérmico para um sistema onde as hidrelétricas estão em paralelo, buscando estender os resultados obtidos por Bortolossi, Pereira e Tomei. Com uma conveniente formulação contínua, estabelecemos um teorema que garante a existência de solução para este problema, e caracterizamos os ótimos interiores. / [en] In this work we study the problem of hydrothermal scheduling for a system where the hydroelectric power stations are disposed in parallel, trying to extend the results obtained by Bortolossi, Pereira e Tomei. With a convenient continuous formulation, we establish a theorem that guarantees the existence of solution to this problem, and characterize the interior optimums. / [es] En este trabajo estudiamos el problema de planeamiento hidrotérmico para un sistema donde las hidroeléctricas están en paralelo, com el objetivo de extender los resultados obtenidos por Bortolosi, Pereira y Tomei. Con una formulación contínua conveniente, establecemos un teorema que garantiza la existencia de solución para este problema, y caracterizamos los óptimos interiores.
22

Distributed Optimization in Electric Power Systems: Partitioning, Communications, and Synchronization

Guo, Junyao 01 March 2018 (has links)
To integrate large volumes of renewables and use electricity more efficiently, many industrial trials are on-going around the world that aim to realize decentralized or hierarchical control of renewable and distributed energy resources, flexible loads and monitoring devices. As the cost and complexity involved in the centralized communications and control infrastructure may be prohibitive in controlling millions of these distributed energy resources and devices, distributed optimization methods are expected to become much more prevalent in the operation of future electric power systems, as they have the potential to address this challenge and can be applied to various applications such as optimal power ow, state estimation, voltage control, and many others. While many distributed optimization algorithms are developed mathematically, little effort has been reported so far on how these methods should actually be implemented in real-world large-scale systems. The challenges associated with this include identifying how to decompose the overall optimization problem, what communication infrastructures can support the information exchange among subproblems, and whether to coordinate the updates of the subproblems in a synchronous or asynchronous manner. This research is dedicated to developing mathematical tools to address these issues, particularly for solving the non-convex optimal power flow problem. As the first part of this thesis, we develop a partitioning method that defines the boundaries of regions when applying distributed algorithms to a power system. This partitioning method quantifies the computational couplings among the buses and groups the buses with large couplings into one region. Through numerical experiments, we show that the developed spectral partitioning approach is the key to achieving fast convergence of distributed optimization algorithms on large-scale systems. After the partitioning of the system is defined, one needs to determine whether the communications among neighboring regions are supported. Therefore, as the second part of this thesis, we propose models for centralized and distributed communications infrastructures and study the impact of communication delays on the efficiency of distributed optimization algorithms through network simulations. Our findings suggest that the centralized communications infrastructure can be prohibitive for distributed optimization and cost-effective migration paths to a more distributed communications infrastructure are necessary. As the sizes and complexities of subproblems and communication delays are generally heterogeneous, synchronous distributed algorithms can be inefficient as they require waiting for the slowest region in the system. Hence, as the third part of this thesis, we develop an asynchronous distributed optimization method and show its convergence for the considered optimal power flow problem. We further study the impact of parameter tuning, system partitioning and communication delays on the proposed asynchronous method and compare its practical performance with its synchronous counterpart. Simulation results indicate that the asynchronous approach can be more efficient with proper partitioning and parameter settings on large-scale systems. The outcome of this research provides important insights into how existing hardware and software solutions for Energy Management Systems in the power grid can be used or need to be extended for deploying distributed optimization methods, which establishes the interconnection between theoretical studies of distributed algorithms and their practical implementation. As the evolution towards a more distributed control architecture is already taking place in many utility networks, the approaches proposed in this thesis provide important tools and a methodology for adopting distributed optimization in power systems.
23

Multilevel optimization in infinity norm and associated stopping criteria / Optimisation multiniveaux en norme infinie et critères d’arrêt associés

Mouffe, Mélodie 10 February 2009 (has links)
Cette thèse se concentre sur l'étude d'un algorithme multi niveaux de régions de confiance en norme infinie, conçu pour la résolution de problèmes d'optimisation non linéaires de grande taille pouvant être soumis a des contraintes de bornes. L'étude est réalisée tant sur le plan théorique que numérique. L'algorithme RMTR8 que nous étudions ici a été élaboré a partir de l'algorithme présente par Gratton, Sartenaer et Toint (2008b), et modifie d'abord en remplaçant l'usage de la norme Euclidienne par une norme infinie, et ensuite en l'adaptant a la résolution de problèmes de minimisation soumis a des contraintes de bornes. Dans un premier temps, les spécificités du nouvel algorithme sont exposées et discutées. De plus, l'algorithme est démontré globalement convergent au sens de Conn, Gould et Toint (2000), c'est-a-dire convergent vers un minimum local au départ de tout point admissible. D'autre part, il est démontre que la propriété d'identification des contraintes actives des méthodes de régions de confiance basées sur l'utilisation d'un point de Cauchy peut être étendue a tout solveur interne respectant une décroissance suffisante. En conséquence, cette propriété d'identification est aussi respectée par une variante particulière du nouvel algorithme. Par la suite, nous étudions différents critères d'arrêt pour les algorithmes d'optimisation avec contraintes de bornes afin de déterminer le sens et les avantages de chacun, et ce pour pouvoir choisir aisément celui qui convient le mieux a certaines situations. En particulier, les critères d'arrêts sont analyses en termes d'erreur inverse (backward erreur), tant au sens classique du terme (avec l'usage d'une norme produit) que du point de vue de l'optimisation multicritères. Enfin, un algorithme pratique est mis en place, utilisant en particulier une technique similaire au lissage de Gauss-Seidel comme solveur interne. Des expérimentations numériques sont réalisées sur une version FORTRAN 95 de l'algorithme. Elles permettent d'une part de définir un panel de paramètres efficaces par défaut et, d'autre part, de comparer le nouvel algorithme a d'autres algorithmes classiques d'optimisation, comme la technique de raffinement de maillage ou la méthode du gradient conjugue, sur des problèmes avec et sans contraintes de bornes. Ces comparaisons numériques semblent donner l'avantage à l'algorithme multi niveaux, en particulier sur les cas peu non-linéaires, comportement attendu de la part d'un algorithme inspire des techniques multi grilles. En conclusion, l'algorithme de région de confiance multi niveaux présente dans cette thèse est une amélioration du précédent algorithme de cette classe d'une part par l'usage de la norme infinie et d'autre part grâce a son traitement de possibles contraintes de bornes. Il est analyse tant sur le plan de la convergence que de son comportement vis-à-vis des bornes, ou encore de la définition de son critère d'arrêt. Il montre en outre un comportement numérique prometteur. / This thesis concerns the study of a multilevel trust-region algorithm in infinity norm, designed for the solution of nonlinear optimization problems of high size, possibly submitted to bound constraints. The study looks at both theoretical and numerical sides. The multilevel algorithm RMTR8 that we study has been developed on the basis of the algorithm created by Gratton, Sartenaer and Toint (2008b), which was modified first by replacing the use of the Euclidean norm by the infinity norm and also by adapting it to solve bound-constrained problems. In a first part, the main features of the new algorithm are exposed and discussed. The algorithm is then proved globally convergent in the sense of Conn, Gould and Toint (2000), which means that it converges to a local minimum when starting from any feasible point. Moreover, it is shown that the active constraints identification property of the trust-region methods based on the use of a Cauchy step can be extended to any internal solver that satisfies a sufficient decrease property. As a consequence, this identification property also holds for a specific variant of our new algorithm. Later, we study several stopping criteria for nonlinear bound-constrained algorithms, in order to determine their meaning and their advantages from specific points of view, and such that we can choose easily the one that suits best specific situations. In particular, the stopping criteria are examined in terms of backward error analysis, which has to be understood both in the usual meaning (using a product norm) and in a multicriteria optimization framework. In the end, a practical algorithm is set on, that uses a Gauss-Seidel-like smoothing technique as an internal solver. Numerical tests are run on a FORTRAN 95 version of the algorithm in order to define a set of efficient default parameters for our method, as well as to compare the algorithm with other classical algorithms like the mesh refinement technique and the conjugate gradient method, on both unconstrained and bound-constrained problems. These comparisons seem to give the advantage to the designed multilevel algorithm, particularly on nearly quadratic problems, which is the behavior expected from an algorithm inspired by multigrid techniques. In conclusion, the multilevel trust-region algorithm presented in this thesis is an improvement of the previous algorithm of this kind because of the use of the infinity norm as well as because of its handling of bound constraints. Its convergence, its behavior concerning the bounds and the definition of its stopping criteria are studied. Moreover, it shows a promising numerical behavior.
24

A conic optimization approach to variants of the trust region subproblem

Yang, Boshi 01 July 2015 (has links)
The Trust Region Subproblem (TRS), which minimizes a nonconvex quadratic function over the unit ball, is an important subproblem in trust region methods for nonlinear optimization. Even though TRS is a nonconvex problem, it can be solved in polynomial time using, for example, a semidefinite programming (SDP) relaxation. Different variants of TRS have been considered from both theoretical and practical perspectives. In this thesis, we study three variants of TRS and their SDP/conic relaxations. We first study an extended trust region subproblem (eTRS) in which the trust region equals the intersection of the unit ball with M linear cuts. When m = 0, when m = 1, or when m = 2 and the linear cuts are parallel, it is known that the eTRS optimal value equals the optimal value of a particular conic relaxation, which is solvable in polynomial time. However, it is also known that, when m ≥2 and at least two of the linear cuts intersect within the ball, i.e., some feasible point of the eTRS satisfies both linear constraints at equality, then the same conic relaxation may admit a gap with eTRS. We show that the conic relaxation admits no gap for arbitrary M as long as the linear cuts are non-intersecting. We then extend our result to a more general setting. We study an eTRS in which a quadratic function is minimized over a structured nonconvex feasible region: the unit ball with M linear cuts and R hollows. In the special case when m = 0 and r = 1, it is known that the eTRS has a tight polynomial-time solvable conic relaxation. We show that a certain conic relaxation is also tight for general R and M as long as the cuts and hollows satisfy some non-intersecting assumptions that generalize the previous paragraph. Finally, intersecting the feasible region of TRS with a second ellipsoid results in the two-trust-region subproblem (TTRS). Even though TTRS can also be solved in polynomial-time, existing approaches do not provide a concise conic relaxation. We investigate the use of conic relaxation for TTRS. Starting from the basic SDP relaxation of TTRS, which admits a gap, recent research has tightened the basic relaxation using valid second-order-cone (SOC) inequalities. For the special case of TTRS in dimension n=2, we fully characterize the remaining valid inequalities, which can be viewed as strengthened versions of the SOC inequalities just mentioned. We also demonstrate that these valid inequalities can be used computationally even when n > 2 to solve TTRS instances that were previously unsolved using techniques of conic relaxation.
25

STUDIES ON OPTIMIZATION PROBLEMS WITH POSITIVELY HOMOGENEOUS FUNCTIONS AND ASSOCIATED DUALITY RESULTS / 正斉次関数を含む最適化問題とその双対性に関する研究

Yamanaka, Shota 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23546号 / 情博第776号 / 新制||情||132(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 山下 信雄, 教授 太田 快人, 教授 永持 仁 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
26

Wireless Sensor Networks in Smart Cities : The Monitoring of Water Distribution Networks Case

Rong, Du January 2016 (has links)
The development of wireless sensor networks (WSNs) is making it possible to monitor our cities. Due to the small size of the sensor nodes, and their capabilities of transmitting data remotely, they can be deployed at locations that are not easy or impossible to access, such as the pipelines of water distribution networks (WDNs), which plays an important role in protecting environment and securing public health.   The design of WSNs for WDNs faces major challenges. Generally, WSNs are resource-limited because most of the sensor nodes are battery powered. Thus, their resource allocation has to be carefully controlled. The thesis considers two prominent problems that occur when designing WSNs for WDNs: scheduling the sensing of the nodes of static WSNs, and sensor placement for mobile WSNs. These studies are reported in the thesis from three published or submitted papers. In the first paper, the scheduling of sleep/sensing for each sensor node is considered to maximize the whole WSNs lifetime while guaranteeing a monitoring performance constraint. The problem is transformed into an energy balancing problem, and solved by a dynamic programming based algorithm. It is proved that this algorithm finds one of the optimal solutions for the energy balancing problem. In the second paper, the question of how the energy balancing problem approximates the original scheduling problem is addressed. It is shown that even though these two problems are not equivalent, the gap of them is small enough. Thus, the proposed algorithm for the energy balancing problem can find a good approximation solution for the original scheduling problem. The second part of the thesis considers the use of mobile sensor nodes. Here, the limited resource is the number of available such mobile nodes. To maximize the monitoring coverage in terms of population, an optimization problem for determining the releasing locations for the mobile sensor nodes is formulated. An approximate solution algorithm based on submodular maximization is proposed and its performance is investigated. Beside WDNs, WSN applications for smart cities share a common characteristic: the area to monitor usually has a network structure. Therefore, the studies of this thesis can be potentially generalized for several IoT scenarios. / <p>QC 20160419</p>
27

Nonconvex Optimization in Machine Learning: Convergence, Landscape, and Generalization

Zhou, Yi January 2018 (has links)
No description available.
28

High-Dimensional Statistical Inference from Coarse and Nonlinear Data: Algorithms and Guarantees

Fu, Haoyu January 2019 (has links)
No description available.
29

Solving Factorable Programs with Applications to Cluster Analysis, Risk Management, and Control Systems Design

Desai, Jitamitra 20 July 2005 (has links)
Ever since the advent of the simplex algorithm, linear programming (LP) has been extensively used with great success in many diverse fields. The field of discrete optimization came to the forefront as a result of the impressive developments in the area of linear programming. Although discrete optimization problems can be viewed as belonging to the class of nonconvex programs, it has only been in recent times that optimization research has confronted the more formidable class of continuous nonconvex optimization problems, where the objective function and constraints are often highly nonlinear and nonconvex functions, defined in terms of continuous (and bounded) decision variables. Typical classes of such problems involve polynomial, or more general factorable functions. This dissertation focuses on employing the Reformulation-Linearization Technique (RLT) to enhance model formulations and to design effective solution techniques for solving several practical instances of continuous nonconvex optimization problems, namely, the hard and fuzzy clustering problems, risk management problems, and problems arising in control systems. Under the umbrella of the broad RLT framework, the contributions of this dissertation focus on developing models and algorithms along with related theoretical and computational results pertaining to three specific application domains. In the basic construct, through appropriate surrogation schemes and variable substitution strategies, we derive strong polyhedral approximations for the polynomial functional terms in the problem, and then rely on the demonstrated (robust) ability of the RLT for determining global optimal solutions for polynomial programming problems. The convergence of the proposed branch-and-bound algorithm follows from the tailored branching strategy coupled with consistency and exhaustive properties of the enumeration tree. First, we prescribe an RLT-based framework geared towards solving the hard and fuzzy clustering problems. In the second endeavor, we examine two risk management problems, providing novel models and algorithms. Finally, in the third part, we provide a detailed discussion on studying stability margins for control systems using polynomial programming models along with specialized solution techniques. / Ph. D.
30

Computational convex analysis : from continuous deformation to finite convex integration

Trienis, Michael Joseph 05 1900 (has links)
After introducing concepts from convex analysis, we study how to continuously transform one convex function into another. A natural choice is the arithmetic average, as it is pointwise continuous; however, this choice fails to average functions with different domains. On the contrary, the proximal average is not only continuous (in the epi-topology) but can actually average functions with disjoint domains. In fact, the proximal average not only inherits strict convexity (like the arithmetic average) but also inherits smoothness and differentiability (unlike the arithmetic average). Then we introduce a computational framework for computer-aided convex analysis. Motivated by the proximal average, we notice that the class of piecewise linear-quadratic (PLQ) functions is closed under (positive) scalar multiplication, addition, Fenchel conjugation, and Moreau envelope. As a result, the PLQ framework gives rise to linear-time and linear-space algorithms for convex PLQ functions. We extend this framework to nonconvex PLQ functions and present an explicit convex hull algorithm. Finally, we discuss a method to find primal-dual symmetric antiderivatives from cyclically monotone operators. As these antiderivatives depend on the minimal and maximal Rockafellar functions [5, Theorem 3.5, Corollary 3.10], it turns out that the minimal and maximal function in [12, p.132,p.136] are indeed the same functions. Algorithms used to compute these antiderivatives can be formulated as shortest path problems.

Page generated in 0.0428 seconds