• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing impacts of the Aquatic Invaders in Maine (AIM) workshop on inquiry pedagogy and student learning /

Miniutti, Danielle, January 2009 (has links)
Thesis (M.S.) in Teaching--University of Maine, 2009. / Includes vita. Includes bibliographical references (leaves 108-117).
2

Climate change and invasive species interact to impact succession and diversity in Gulf of Maine marine fouling communities /

Dijkstra, Jennifer Anne. January 2007 (has links) (PDF)
Theses (Ph.D.)--University of New Hampshire (Dept. of Zoology), 2007. / Includes bibliographical references. Also available online.
3

Implications of the introduction and transfer of non-indigenous marine species with particular reference to Canadian marine aquaculture /

Nichols, Danielle, January 2001 (has links)
Thesis (M.M.S.)--Memorial University of Newfoundland, 2002. / Bibliography: leaves 93-105.
4

Shelter competition between native signal crayfish and non-native red swamp crayfish in Pine Lake, Sammamish, Washington : the role of size and sex /

Mueller, Karl W. January 2007 (has links)
Thesis (M.S.)--Western Washington University, 2007. / Includes bibliographical references (leaves 73-84).
5

Assessing Impacts of the Aquatic Invaders in Maine (AIM) Workshop on Inquiry Pedagogy and Student Learning

Miniutti, Danielle January 2009 (has links) (PDF)
No description available.
6

Proposed South African management framework for the implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments

Nolting, Janine January 2011 (has links)
South Africa, strategically situated at the southern tip of Africa, is edged on three sides by almost 3000 km of coastline surrounded by the Indian Ocean and the Atlantic Ocean (South African Tourism, 2011). This vast ocean expanse is responsible for conveying approximately 96% of South Africa’s exports (Brand South Africa, 2011). Despite the positive economic effects of the shipping industry, translocation of harmful organisms and pathogens via ballast water and sediments inside ballast water tanks has far reaching global environmental (and economic) impacts (Oliviera, 2008:1; David and Gollasch, 2008:1966). Ballast water is the water that is taken on in order to manage the draft of the ship, to help with propulsion, manoeuvrability, trim control, list and stability (Oliviera, 2008:2). The discharge of ballast water into the world’s oceans has resulted in the transfer of ecologically harmful sea-life into non-native environments (IMO, 2011), resulting in major environmental threats to our oceans (Bax, Williamson, Aguero, Gonzalez and Geeves, 2003:313). Various international documents have been developed to deal with the ballast water issue, culminating in the introduction of the International Convention for the Control and Management of Ships’ Ballast Water and Sediments (“the Convention”) in 2004. The Convention aims at achieving a reduction in the transfer and subsequent impacts of aquatic organisms via the ballast water and sediment of ships. On a local level, South Africa does not have direct legislation or regulations dealing with ballast water (Duncan, 2007:34) and relies on the combination of a number of pieces of legislation relating to environmental management, coastal management, biodiversity, alien invasive species control, port control and ship safety (National Environmental Management Act, 1998, National Environmental Management: Biodiversity Act, 2004, National Environmental Management: Integrated Coastal Management Act, 2009, National Ports Act, 2005 and Merchant Shipping Act, 1951). Although the Convention was ratified by South Africa in 2008 (Department of International Relations and Cooperation, 2011) it is still not in force and there still exists no other consolidated legal mechanism through which ballast water is managed. This research has investigated the various roles, responsibilities and mandates of South African competent authorities under the aforementioned legislation in managing ballast water, and has determined that there is definite legislative and institutional fragmentation as well as overlaps. A comparative analysis of management frameworks developed both locally and internationally was conducted in order to develop a management framework for ballast water management in South Africa. Various legislative, institutional and functional aspects were identified and adapted for inclusion in a South African management framework. A co-ordinated approach to ballast water management has been developed in the management framework which is anticipated to result in more definitive roles and responsibilities of the various South African departments involved in the management of ballast water and implementation of the Convention.
7

Hyperspectral Hypertemporal Feature Extraction Methods with Applications to Aquatic Invasives Target Detection

Mathur, Abhinav 13 May 2006 (has links)
In this dissertation, methods are designed and validated for the utilization of hyperspectral hypertemporal remotely sensed data in target detection applications. Two new classes of methods are designed to optimize the selection of target detection features from spectro-temporal space data. The first method is based on the consideration that all the elements of the spectro-temporal map are independent of each other. The second method is based on the consideration that the elements of the spectro-temporal map have some vicinal dependency among them. Methods designed for these two approaches include various stepwise selection methods, windowing approaches, and clustering techniques. These techniques are compared to more traditional feature extraction methods such as Normalized Difference Vegetation Index (NDVI), spectral analysis, and Principal Component Analysis (PCA). The efficacies of the new methods are demonstrated within an aquatic invasive species detection application, namely discriminating waterhyacinth from other aquatic vegetation such as American lotus. These two aquatic plant species are chosen for testing the proposed methods as they have very similar physical characteristics and they represent a practical life target detection problem. It is observed from the overall classification accuracy estimates that the proposed feature extraction methods show a marked improvement over conventional methods. Along with improving the accuracy estimates, these methods demonstrate a capability to drastically reduce the dimensionality while retaining the desired hyperspectral hypertemporal features. Furthermore, the feature set extracted using the newly developed methods provide information about the optimum subset of the hyperspectral hypertemporal data for a specific target detection application, which makes these methods serve as tools to strategize more intelligent data collection plans.
8

Trophic niche and detection of the invasive signal crayfish (Pacifastacus leniusculus) in Scotland

Harper, Kirsten Jennifer January 2015 (has links)
Aquatic invasive species are a major threat to native freshwater biodiversity. The North American signal crayfish Pacifastacus leniusculus was introduced to Great Britain during the 1970s and is now widely distributed throughout England, Wales and Scotland. First recorded in Scotland in 1995, P. leniusculus is now established at more than twenty sites. The only other introduced crayfish species present in Scotland is the white-clawed crayfish Austropotamobius pallipes. A. pallipes is restricted to only two locations in Scotland, Loch Croispol and Whitemoss Reservoir. P. leniusculus negatively impacts macrophytes, invertebrates and fish though ecological and physical processes. Additionally, P. leniusculus has displaced A. pallipes throughout much of its native range within Great Britain due to competition and disease. Consequently, the two A. pallipes populations in Scotland have a high conservation value. This PhD study aimed to improve understanding of P. leniusculus invasion success by examining trophic dynamics and to develop methodologies that could improve the detection and control of P. leniusculus populations in Scotland. Stable isotope analysis was used to determine the diet composition, trophic position and whether an ontogenetic dietary shift occurs in the Loch Ken population of P. leniusculus. Bayesian mixing models indicated that P. leniusculus in Loch Ken do exhibit an ontogenetic dietary shift. Additionally, individuals of all sizes occupied the trophic position of a predator in Loch Ken suggesting that invertebrates and fish constitute an important component of P. leniusculus diet. Stable isotope analysis was used once again to compare the isotopic niche width and diet composition of P. leniusculus populations from Loch Ken and A. pallipes populations from Loch Croispol and Whitemoss Reservoir. At the species level, A. pallipes exhibited a larger niche width than that of P. leniusculus. At the population level, the isotopic signatures of the A. pallipes populations were considerably different from each other suggesting an overestimation of A. pallipes’ niche width at species level. Results showed no dietary overlap between species and Bayesian mixing models suggested P. leniusculus and A. pallipes were consuming different resources, indicating there would be no direct competition for food resources if they were to co-occur. A plus-maze study was used to determine if P. leniusculus exhibited a preference for one of four food attractants (Oncorhynchus mykiss, P. leniusculus, beef or vegetation), which could be used to improve trapping efficiency. In the maze system, P. leniusculus exhibited no preference for any food attractant presented. This would suggest that either the maze was not a good model or food attractants would not improve trapping efficiency of P. leniusculus. Additionally, a comparative investigation into the use of gill nets as a method to control P. leniusculus was conducted. Results showed that the net type and the presence of fish entangled in the net influenced the number of P. leniusculus caught. Finally, environmental DNA (eDNA) was used and evaluated for detection of P. leniusculus. A robust quantitative Polymerase Chain Reaction (qPCR) assay and DNA extraction protocol were developed. Using the developed qPCR assay, P. leniusculus eDNA was detected in controlled aquaria conditions but not in environmental water samples collected from the field. Furthermore, the quantities of P. leniusculus eDNA declined in aquaria conditions while individuals were still present suggesting the mechanisms for eDNA release by P. leniusculus are complex. Stable isotope analysis indicates that P. leniusculus exhibit an ontogenetic dietary shift, and in each life stage, P. leniusculus function as an omnivore but occupy the trophic position of a predator. Niche width analysis revealed that the diet of P. leniusculus was less general than that observed in A. pallipes and thus diet of P. leniusculus may not be responsible for invasive success. Food attractants will not enhance trapping efficiency but nets may present a potential new method to control P. leniusculus. Similarly, eDNA presents a promising new method for rapid detection of P. leniusculus. It will not be possible to eradicate P. leniusculus in Scotland but the findings of this PhD may help prevent establishment of new populations. These results should be incorporated into future management strategies for P. leniusculus populations in Scotland and may have broader applications in Great Britain and Europe.
9

Biofouling Management in the Pacific Northwest and Predation on Native versus Non-native Ascidians

Kincaid, Erin Suzanne 06 July 2016 (has links)
Marine non-native species threaten economic and environmental health, making it crucial to understand factors that make them successful. Research on these species, therefore, allows for greater preparedness and informed management of biological invasions and increases understanding of elements structuring biological communities. Among the marine non-native species, and particularly the fouling community, non-native ascidians are a taxon of particular concern because they can crowd out native benthic species and smother mariculture products. This thesis addresses management for ascidians and other fouling organisms and includes research on the invasiveness of this taxon in addition to the invasibility of recipient fouling communities. On the West Coast of the U.S., limited efforts have been made to coordinate biofouling management across states, despite the myriad vectors increasing propagule pressure over time along coastal states. Building on recent state and local efforts, I developed a Pacific Regional Biofouling Plan for the states of Oregon and Washington to help start a consensus-driven process by which these states could create a forum for more comprehensive coordination efforts, following California's lead. As states address authority gaps, the biofouling management framework I've written is meant to be used to guide the conversation between managers as various stages of coastal management are realized. To better inform the scope and efficacy of management and regulatory efforts, the study of invasions ecology asks and aims to answer questions regarding recipient community interactions and characteristics of the non-native species themselves. Studies that identify characteristics that make ascidians successful (invasiveness) and determine the influence native communities have on their success (invasibility) are important for assessing overall risk of establishment and spread from non-native ascidians. Therefore, I aimed to: 1) explore the hypothesis that fouling communities on suspended, artificial structures are more invasible than benthic habitats; and 2) identify characteristics influencing predation patterns on the native Distaplia occidentalis versus non-native ascidian species using mensurative and experimental studies in Charleston Marina, Oregon. I conducted a series of feeding assays, surveys, and a caloric content analysis. Feeding assays were conducted with a suite of predators. The flatworm predator (Eurylepta leoparda) was found to be highly selective on the native ascidian Distaplia occidentalis, and only preyed on whole colony samples. Feeding assay data suggest that test (tunic) structure or thickness may be an influential factor affecting nudibranch (Hermissenda crassicornis) predation rates on native versus non-native ascidians, with greater predation on the native ascidian species. Non-native ascidians may escape predation in floating but not benthic environments on the Oregon coast due to their palatability characteristics, likely tunic structure and low caloric content. In this case, this suite of predators may indirectly facilitate the invasion of docks but provide at least partial resistance to the invasion of natural benthic areas. The chapters herein address gaps in management and scientific knowledge regarding non-native species of the marine fouling community. Future work enhanced by my efforts could include the development of the coastal biofouling management plan, coordinated by the Western Regional Panel on Aquatic Invasive Species Coastal Committee, and broadening the geographic and taxonomic scope of my research with a more comprehensive study of predator-prey interactions involving non-native ascidians and a diverse suite of predators. These interactions may be an important factor in explaining the success of ascidians and other fouling organisms on floating structures and lack of success on nearby benthic substrata.

Page generated in 0.0692 seconds