• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 377
  • 97
  • 72
  • 50
  • 22
  • 16
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 776
  • 776
  • 223
  • 127
  • 112
  • 105
  • 103
  • 99
  • 98
  • 97
  • 90
  • 90
  • 87
  • 74
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Chemical Structure - Nonlinear Optical Property Relationships For A Series Of Two-photon Absorbing Fluorene Molecules

Hales, Joel McCajah 01 January 2004 (has links)
This dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident irradiance and the improved penetration into absorbing media that it affords. As a consequence of the burgeoning field which exploits 2PA, it is a goal to find materials that exhibit strong two-photon absorbing capabilities. Organic materials are promising candidates for 2PA applications because their material properties can be tailored through molecular engineering thereby facilitating optimization of their nonlinear optical properties. Fluorene derivatives are particularly interesting since they possess high photochemical stability for organic molecules and are generally strongly fluorescent. By systematically altering the structural properties in a series of fluorenyl molecules, we have determined how these changes affect their two-photon absorbing capabilities. This was accomplished through characterization of both the strength and location of their 2PA spectra. In order to ensure the validity of these results, three separate nonlinear characterization techniques were employed: two-photon fluorescence spectroscopy, white-light continuum pump-probe spectroscopy, and the Z-scan technique. In addition, full linear spectroscopic characterization was performed on these molecules along with supplementary quantum chemical calculations to obtain certain molecular properties that might impact the nonlinearity. Different designs in chemical architecture allowed investigation of the effects of symmetry, solvism, donor-acceptor strengths, conjugation length, and multi-branched geometries on the two-photon absorbing properties of these molecules. In addition, the means to enhance 2PA via intermediate state resonances was investigated. To provide plausible explanations for the experimentally observed trends, a conceptually simple three level model was employed. The subsequent correlations found between chemical structure and the linear and nonlinear optical properties of these molecules provided definitive conclusions on how to properly optimize their two-photon absorbing capabilities. The resulting large nonlinearities found in these molecules have already shown promise in a variety of the aforementioned applications.
412

Optical Wave Propagation In Discrete Waveguide Arrays

Hudock, Jared 01 January 2005 (has links)
The propagation dynamics of light in optical waveguide arrays is characteristic of that encountered in discrete systems. As a result, it is possible to engineer the diffraction properties of such structures, which leads to the ability to control the flow of light in ways that are impossible in continuous media. In this work, a detailed theoretical investigation of both linear and nonlinear optical wave propagation in one- and two-dimensional waveguide lattices is presented. The ability to completely overcome the effects of discrete diffraction through the mutual trapping of two orthogonally polarized coherent beams interacting in Kerr nonlinear arrays of birefringent waveguides is discussed. The existence and stability of such highly localized vector discrete solitons is analyzed and compared to similar scenarios in a single birefringent waveguide. This mutual trapping is also shown to occur within the first few waveguides of a semi-infinite array leading to the existence of vector discrete surface waves. Interfaces between two detuned semi-infinite waveguide arrays or waveguide array heterojunctions and their possible applications are also considered. It is shown that the detuning between the two arrays shifts the dispersion relation of one array with respect to the other. Consequently, these systems provide spatial filtering functions that may prove useful in future all-optical networks. In addition by exploiting the unique diffraction properties of discrete arrays, diffraction compensation can be achieved in a way analogous to dispersion compensation in dispersion managed optical fiber systems. Finally, it is demonstrated that both the linear (diffraction) and nonlinear dynamics of two-dimensional waveguide arrays are significantly more complex and considerably more versatile than their one-dimensional counterparts. As is the case in one-dimensional arrays, the discrete diffraction properties of these two-dimensional lattices can be effectively altered depending on the propagation Bloch k-vector within the first Brillouin zone. In general, this diffraction behavior is anisotropic and as a result, allows the existence of a new class of discrete elliptic solitons in the nonlinear regime. Moreover, such arrays support two-dimensional vector soliton states, and their existence and stability are also thoroughly explored in this work.
413

Molecular Structure-nonlinear Optical Property Relationships For A Series Of Polymethine And Squaraine Molecules

Fu, Jie 01 January 2006 (has links)
This dissertation reports on the investigation of the relationships between molecular structure and two-photon absorption (2PA) properties for a series of polymethine and squaraine molecules. Current and emerging applications exploiting the quadratic dependence upon laser intensity, such as two-photon fluorescence imaging, three-dimensional microfabrication, optical data storage and optical limiting, have motivated researchers to find novel materials exhibiting strong 2PA. Organic materials are promising candidates because their linear and nonlinear optical properties can be optimized for applications by changing their structures through molecular engineering. Polymethine and squaraine dyes are particularly interesting because they are fluorescent and showing large 2PA. We used three independent nonlinear spectroscopic techniques (Z-scan, two-photon fluorescence and white-light continuum pump-probe spectroscopy) to obtain the 2PA spectra revealing 2PA bands, and we confirm the experimental data by comparing the results from the different methods mentioned. By systematically altering the structure of polyemthines and squaraines, we studied the effects of molecular symmetry, strength of donor terminal groups, conjugation length of the chromophore chain, polarity of solvents, and the effects of placing bridge molecules inside the chromophore chain on the 2PA properties. We also compared polymethine, squaraine, croconium and tetraon dyes with the same terminal groups to study the effects of the different additions inserted within the chromophore chain on their optical properties. Near IR absorbing squaraine dyes were experimentally observed to show extremely large 2PA cross sections ([approximately equal to] 30000GM). A simplified three-level model was used to fit the measured 2PA spectra and detailed quantum chemical calculations revealed the reasons for the squaraine to exhibit strong 2PA. In addition, two-photon excitation fluorescence anisotropy spectra were measured through multiple 2PA transitions. A theoretical model based on four-levels with two intermediate states was derived and used for analysis of the experimental data.
414

Two-photon absorption in bulk semiconductors and quantum well structures and its applications

Pattanaik, Himansu 01 January 2015 (has links)
The purpose of this dissertation is to provide a study and possible applications of two-photon absorption (2PA), in direct-gap semiconductors and quantum-well (QW) semiconductor structures. One application uses extremely nondegenerate (END) 2PA, for mid-infrared (mid-IR) detection in uncooled semiconductors. The use of END, where the two photons have very different energies gives strong enhancement comapared to degenerate 2PA. This END-2PA enhanced detection is also applied to mid-IR imaging and light detection and ranging (LIDAR) in uncooled direct-gap photodiodes. A theoretical study of degenerate 2PA (D-2PA) in quantum wells, QWs, is presented, along with a new theory of ND 2PA in QWs is developed. Pulsed mid-IR detection of femtosecond pulses is investigated in two different semiconductor p-i-n photodiodes (GaAs and GaN). With the smaller gap materials having larger ND-2PA, it is observed that they have better sensitivity to mid-IR detection, but unwanted background from D-2PA outweighs this advantage. A comparison of responsivity and signal-to-background ratio for GaAs and GaN in END-2PA based detection is presented. END-2PA enhancement is utilized for CW IR detection in uncooled GaAs and GaN p-i-n photodiodes. The pulsed mid-IR detection experiments are further extended to perform mid-IR imaging in uncooled GaN p-i-n photodetectors. A 3-D automated scanning gated imaging system is developed to obtain 3-D mid-IR images of various objects. The gated imaging system allows simultaneous 3-D and 2-D imaging of objects. The 3-D gated imaging system described in the dissertation could be used for examination of buried structures (microchannels, defects etc.) or laser written volumetric structures and could also be suitable for in-vivo imaging applications in biology in the mid-IR spectral region. As an example, 3-D imaging of buried semiconductor structures is presented. A theoretical study of D-2PA of QWs for transverse electric (TE) and transverse magnetic (TM) fields is carried out and an analytical expression for the D-2PA coefficient in QWs using second-order perturbation theory is derived. A theory for ND-2PA in QW semiconductor using second-order perturbation theory is developed for the first time and an analytical expression for the ND-2PA coefficient for TE, TM, and the mixed case of TE and TM is derived. The shape of the 2PA curve for the D-2PA and ND-2PA for QWs in the TE case is similar to that of bulk semiconductors. As governed by the selection rules both the D-2PA and ND-2PA curves for the TE case does not show a step-like signature for the density of states of the QWs whereas 2PA curve for the TM case shows such step like sharp features. The ND-2PA coefficient for TE, TM, and the mixed case is compared with that obtained for bulk semiconductors. Large enhancement in ND-2PA of QW semiconductors for the TM case over bulk semiconductors is predicted.
415

Experimental And Theoretical Approaches To Characterization Of Electronic Nonlinearities In Direct-gap Semiconductors

Cirloganu, Claudiu 01 January 2010 (has links)
The general goal of this dissertation is to provide a comprehensive description of the limitations of established theories on bound electronic nonlinearities in direct-gap semiconductors by performing various experiments on wide and narrow bandgap semiconductors along with developing theoretical models. Nondegenerate two-photon absorption (2PA) is studied in several semiconductors showing orders of magnitude enhancement over the degenerate counterpart. In addition, three-photon absorption (3PA) is studied in ZnSe and other semiconductors and a new theory using a Kane 4-band model is developed which fits new data well. Finally, the narrow gap semiconductor InSb is studied with regard to multiphoton absorption, free-carrier nonlinearities and decay mechanisms. The non-degenerate two-photon absorption was investigated in several direct-gap semiconductors with picosecond and femtosecond pulses. Large enhancements in 2PA were demonstrated when employing highly non-degenerate photon pairs and the results were shown to be consistent to a simple 2-parabolic band theory based on a "dressed" state approach. The nonlinear refractive index induced in such configurations was also calculated and possible implications of such extreme behavior are discussed. A large number of measurements of 3PA were taken at multiple wavelengths and in several semiconductors. The subsequent analysis has shown that simple 2-band model calculations (based on either perturbative or tunneling approaches) do not adequately describe the experimental trends. A more comprehensive model, based on Kane’s 4-band theory was developed and we calculate three-photon spectra for zincblende structures within the perturbative iv framework. We have confirmed the results of our calculations performing a series of Z-scans in semiconductors ZnSe and ZnS, yielding complete experimental three-photon spectra. A systematic approach based on using a large variety of pulse durations was needed to quantify the wealth of nonlinear optical processes in InSb, accessible in the mid-infrared range. Femtosecond pulses provided a lower limit to measurements of the instantaneous effects (absorptive and refractive), while picosecond pulses allowed further characterization of the freecarrier effects, including population dynamics in the high density regime (Auger effects). The model developed permitted us to verify the temperature dependence of free-carrier absorption recently predicted, and to successfully model optical limiting data with longer, nanosecond pulses.
416

Nonlinear Absorption And Free Carrier Recombination In Direct Gap Semiconductors

Olszak, Peter D. 01 January 2010 (has links)
Nonlinear absorption of Indium Antimonide (InSb) has been studied for many years, yet due to the complexity of absorption mechanisms and experimental difficulties in the infrared, this is still a subject of research. Although measurements have been made in the past, a consistent model that worked for both picosecond and nanosecond pulse widths had not been demonstrated. In this project, temperature dependent two-photon (2PA) and free carrier absorption (FCA) spectra of InSb are measured using femtosecond, picosecond, and nanosecond IR sources. The 2PA spectrum is measured at room temperature with femtosecond pulses, and the temperature dependence of 2PA and FCA is measured at 10.6µm using a nanosecond CO2 laser giving results consistent with the temperature dependent measurements at several wavelengths made with a tunable picosecond system. Measurements over this substantial range of pulse widths give results for FCA and 2PA consistent with a recent theoretical model for FCA. While the FCA cross section has been generally accepted in the past to be a constant for the temperatures and wavelengths used in this study, this model predicts that it varies significantly with temperature as well as wavelength. Additionally, the results for 2PA are consistent with the band gap scaling (Eg-3 ) predicted by a simple two parabolic band model. Using nanosecond pulses from a CO2 laser enables the recombination rates to be determined through nonlinear transmittance measurements. Three-photon absorption is also observed in InSb for photon energies below the 2PA band edge. Prior to this work, data on three-photon absorption (3PA) in semiconductors was scarce and most experiments were performed over narrow spectral ranges, v making comparison to the available theoretical models difficult. There was also disagreement between the theoretical results generated by different models, primarily in the spectral behavior. Therefore, we studied the band gap scaling and spectra of 3PA in several semiconductors by the Z-scan technique. The 3PA coefficient is found to vary as (Eg-7 ), as predicted by the scaling rules of simple two parabolic band models. The spectral behavior, which is considerably more complex than for 2PA, is found to agree well with a recently published theory based on a fourband model.
417

Nonlinear Femtosecond Near Infrared Laser Structuring In Oxide Glasses

Royon, Arnaud 01 January 2009 (has links)
Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and nonlinear third-order susceptibility properties have been measured. Moreover, the structuring of fused silica at the subwavelength scale into "nanogratings" is observed and the form of birefringence induced by these structures is discussed. In addition to the fused silica samples, several oxide glasses presenting very distinct chemical compositions have been studied. A sodium-borophosphate glass containing niobium oxide exhibits micro-cracks and nano-crystallites following irradiation. A silicate glass with or without a silver component reveals fluorescent rings or "nanograting" structures. A zinc phosphate glass containing silver also presents fluorescent ring structures, with a size of the order of 80 nm, well below the diffraction limit. Pump-probe microscope techniques have been performed on this glass to investigate the laser-glass interaction. The absorption mechanism is determined to be four-photon absorption. The generated free electron density is ~ 1017 cm-3, which suggests the conclusion that an electron gas rather than a plasma is formed during the laser irradiation.
418

Development of Advanced Technologies for Mixed Natural Gas Detection

Atwi, Ali January 2022 (has links)
Advanced technologies for mixed gas detection are discussed. A calorific measurement technique for hydrogen-natural gas mixtures using ultrasonic transducers is examined. Measuring the speed of sound in the gas medium enables an accurate composition testing of mixed gas. At the beginning, different ultrasonic transducers are tested and a suitable one for gas testing is chosen. A jig is designed to conduct the testing with nitrogen/oxygen mixtures in a proof of principle experiment. Another jig is designed and manufactured to test a transit time ultrasonic method for flow rate calculation in order to obtain a full energy flow measurement. A mixed gas leak detection technique based on laser spectroscopy is also studied. A Mid-Wave Infrared (MWIR) laser is implemented to be used as a source in a direct absorption measurement for methane detection. The implemented MWIR laser uses nonlinear optics to generate a MWIR output. A novel intracavity structure using periodically poled lithium niobate as the nonlinear crystal is implemented, and the highest blackbox efficiency for continuous wave difference frequency generation in the MWIR region is reported, to the best of our knowledge. Currently the output power is around 8.1 mW at 3.5 μm with a 1.058% W-1 blackbox efficiency. Watt level MWIR generation is expected using an optimized setup. At last, a second laser source that operates in the long-wave infrared (LWIR) region was also studied. The discussed laser setup for LWIR generation is similar to the MWIR one with different pump and signal wavelengths and an orientation patterned gallium phosphide (OP-GaP) as the nonlinear crystal. Due to the absorption loss of GaP at the pump wavelength, only mW power level is expected out of the intracavity structure. Some alternative approaches for LWIR generation are discussed. / Thesis / Master of Applied Science (MASc)
419

<b>QUANTUM EFFECTS IN EXCITON TRANSPORT AND INTERACTION IN MOLECULAR AGGREGATES</b>

Sarath Kumar (17544861) 05 December 2023 (has links)
<p dir="ltr">Long-range exciton transport, when coupled with reduced exciton-exciton annihilation (EEA), is pivotal for the enhanced performance of organic photovoltaics and the efficiency of natural light-harvesting systems. This thesis explores strategies to optimize exciton transport and EEA rates in molecular materials by manipulating the quantum nature of excitons, particularly exciton delocalization. In addition, we also aim to understand factors limiting the transport of delocalized excitons within molecular materials. To this end, self-assembled perylene diimide (PDI) molecular aggregates are ideal candidates for this study due to their conducive properties for engineering exciton delocalization. <b>Chapter 1 </b>establishes a fundamental understanding of exciton delocalization, outlining strategies to tune this phenomenon within PDI aggregates and presenting the open questions this thesis addresses. <b>Chapter 2 </b>details the synthesis of PDI aggregates and delineates the spectroscopic techniques used for characterization, including steady-state absorption and emission, transient photoluminescence (PL), and transient absorption spectroscopy. It also describes the microscopy methods implemented to visualize exciton transport, such as transient PL microscopy and transient absorption microscopy (TAM). <b>Chapter 3 </b>introduces the thesis's primary theme: the suppression of exciton-exciton annihilation (EEA) in molecular aggregates through quantum interference. This chapter demonstrates that the spatial phase relationship of delocalized excitons is crucial in EEA, with band bottom excitons in H aggregates exhibiting an oscillating spatial phase relationship displaying a coherent suppression of EEA. <b>Chapter 4 </b>discusses how coupling to static and dynamic disorder affects coherent exciton propagation. High spatial and temporal resolution TAM experiments, along with temperature-dependent studies, help disentangle the contributions of static and dynamic disorder to exciton transport. <b>Chapter 5 </b>delves into the concept of band shape engineering, whereby the microscopic electronic couplings within PDI aggregates are fine-tuned by altering the packing motifs to regulate exciton transport. Through low-temperature TAM experiments, this chapter illustrates how the interplay between long-range Coulombic and short-range charge transfer electronic couplings can determine exciton bandwidth and influence the coherent propagation of excitons. <b>Chapter 6 </b>provides a summary of the work and discusses future directions, paving the way for continued exploration in the field of exciton transport and interaction in molecular aggregates.</p>
420

Enhancing Time-Resolved THz Systems Through the Integration of Optical Fibers

Couture, Nicolas 21 November 2023 (has links)
Time-resolved terahertz (THz) spectroscopy is an emerging optical characterization technique with the potential of becoming standard practice in fundamental research and in industry. These systems have the ability to be extremely broadband and can retrieve the phase and amplitude information of a THz pulse transmitted through a material, allowing the complex dielectric function of the material to be extracted. Although these systems are already extremely impactful, they nonetheless have their shortcomings. Namely, the data acquisition time required for a single measurement hinders their practicality in an industrial setting or retrieving interesting dynamics within a sample that are occurring on faster timescales. Moreover, broadband THz systems carry a significant financial burden as they rely on ultrafast near-infrared (NIR) sources delivering sub-100 fs pulses, limiting their accessibility. In this work, we address these issues plaguing time-resolved THz systems with the implementation of optical fibers. We begin by describing the physical processes governing ultrashort pulse propagation in fiber and the generation and detection of THz pulses via nonlinear effects in semiconductor crystals. We then design and demonstrate a THz detection scheme able to resolve each of the generated THz pulses at a repetition rate of 50 kHz. This includes using fiber to generate a chirped NIR supercontinuum, imprinting THz waveforms onto the NIR spectrum and thereby enabling single-shot THz detection; and using fiber to achieve photonic time-stretch, a technique allowing us to detect each of the THz-encoded NIR pulses with high-speed electronics at a rate determined by the repetition rate of the laser. The resulting system is then used to track carrier dynamics in a semiconductor as they are dynamically accumulating and recombining. We then combine nonlinear propagation in optical fiber with a time-resolved THz system allowing us to achieve broadband THz generation and detection. We describe two systems relying on this general scheme: The first system relies on a compact and cost-effective laser source and a standard fiber to generate and detect a THz spectrum extending up to 6 THz, alleviating the financial strain imposed by systems relying on sophisticated laser sources without sacrificing performance. The other system relies on an amplified laser source and gas-filled hollow-core photonic crystal fiber (PCF) to generate a tunable spectrum up to 20 THz. Finally, we investigate the generation of a supercontinuum spanning more than two octaves inside a highly nonlinear solid-core PCF. For the first time, we explore both the spectral intensity and polarization structure of such a broad optical spectrum approaching the mid-infrared region.

Page generated in 0.2009 seconds